Advertisement

Economic Considerations

  • Sandra M. Stronach
  • Thomasine Rudd
  • John N. Lester
Part of the Biotechnology Monographs book series (BIOTECHNOLOGY, volume 2)

Abstract

There are several difficulties at once apparent in attempting a useful comparison of the basic reactor types discussed in the preceding chapters: one problem pertains to the characterisation of system design, the demarcation between various bioreactor types being unclear and overlap of many features occurring. The major difference, for example, between the contact and the carrier-assisted contact processes is the presence of a small quantity of inert media as support particles in the latter, a situation easily produced in the former by the introduction of nonbiodegradable suspended solids with the influent; the floc structures of both reactor configurations are practically indistinguishable. The anaerobic sludge blanket and the contact reactor have likewise many similar features, the design differences themselves being in the placement of the settling unit, i.e., internal or external to the reaction vessel. In the case of the fixed-film processes, the borderline between expanded and fluidised bed reactors is indefinite and dependent almost exclusively upon the degree of fluidisation of the carrier particles, which in turn is governed by particle density, porosity and size, and by the fluid flow rate. Other elements must necessarily enter into any qualitative comparisons made between reactor design and mode of operation: these include the strength and complexity of the waste to be treated, the influent flow rate, temperature and pH, and diurnal, seasonal or other temporal variations of these factors. Differences between reactor performances and efficiencies therefore, are not as straightforward as may be expected from design and operational variations.

Keywords

Sewage Sludge Anaerobic Digestion Anaerobic Digestion Process Industrial Wastewater Treatment Anaerobic Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bull MA, Sterritt RM, Lester JN (1983) J ChemTechnol Biotechnol 33B: 221CrossRefGoogle Scholar
  2. 2.
    Kennedy KJ, van den Berg L (1982) Water Res 16: 1391CrossRefGoogle Scholar
  3. 3.
    Lane AG (1983) Environ Technol Lett 4: 349CrossRefGoogle Scholar
  4. 4.
    Anderson GK, Donnelly T (1978) Anaerobic contact digestion for treating high strength soluble wastes. In: Mattock G (ed) New processes of wastewater treatment and recovery. Ellis Horwood, Chichester, p 75Google Scholar
  5. 5.
    Good P, Moudry R, Fluvi P (1982) Biotechnol Lett 4: 565CrossRefGoogle Scholar
  6. 6.
    Stephenson T, Lester JN (in press) Biotechnol BioengGoogle Scholar
  7. 7.
    Switzenbaum MS (1983) Water Sci Technol 15: 345Google Scholar
  8. 8.
    Heijnen JJ Development of a high rate fluidised bed biogas reactor. In: Proc Eur Symp Nov 1983, Noorwijkerhaout, Netherlands, p 259Google Scholar
  9. 9.
    Rittmann BE (1982) Biotechnol Bioeng 24: 1341CrossRefGoogle Scholar
  10. 10.
    Schwartz LJ, De Baere LA, Lanz RW (1982) Biotechnol Bioeng Symp 11: 463Google Scholar
  11. 11.
    Young JC, Dahab MF (1983) Biotechnol Bioeng Symp 12: 303Google Scholar
  12. 12.
    Messing RA (1983) Bioenergy production and pollution control with immobilized microbes. In: Tsao GT (ed) Ann reports on fermentation processes, vol 6. Academic Press, New York London, p 23Google Scholar
  13. 13.
    Christensen DR, Gerick JA, Eblen JE (1984) J Water Pollut Control Fed 56: 1059Google Scholar
  14. 14.
    Winkler M (1981) Biological treatment of wastewater. Ellis Horwood, Chichester, p 211Google Scholar
  15. 15.
    Parkin GF, Speece RE (1982) J Environ Eng Div ASCE 108 (EE3): 515Google Scholar
  16. 16.
    Lin Chou W, Speece RE, Siddiqi RH (1979) Biotechnol Bioeng Symp 8: 391Google Scholar
  17. 17.
    Dahab MF, Young JC (1982) Retention and distribution of biological solids in fixed film anaerobic filters. In: Proc 1st Int Conf on Fixed Film Biol Processes, Kings Island, Ohio, April 1982Google Scholar
  18. 18.
    Newell PJ (1981) The use of a high rate contact reactor for energy production and waste treatment from intensive livestock units. In: Vogt F (ed) Energy conservation and use of renewable energies in the bioindustries. Pergamon, Oxford, p 395Google Scholar
  19. 19.
    Kobayashi HA, Stenstrom MK, Mah RA (1983) Water Res 17: 903CrossRefGoogle Scholar
  20. 20.
    Norrman J (1983) Water Sci Technol 15: 247Google Scholar
  21. 21.
    Crandell CJ, Kerrigan JE, Rohlich GA (1971) Nutrient problems in meat industry wastewater. In: Proc 26th Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1971. Ann Arbor Science, Ann Arbor Michigan, p 199Google Scholar
  22. 22.
    Barnes D, Forster CF, Hrudey SE (1984) Survey in industrial wastewater treatment, vol 2: petroleum and organic chemicals industries. Pittmann, London, p 3Google Scholar
  23. 23.
    Cross WH, Chian ESK, Pohland FG, Harper S, Kharkar S, Cheng SS, Lu F (1983) Biotechnol Bioeng Symp 12: 349Google Scholar
  24. 24.
    Hobson PN (1982) Production of biogas from agricultural wastes. In: Subba Rao NS (ed) Advances in agricultural microbiology. Butterworth Scientific, London, p 523Google Scholar
  25. 25.
    Barnes D, Bliss PJ (1983) Biological control of nitrogen in wastewater treatment. E and FN Spon, London, p 130Google Scholar
  26. 26.
    Melcer H, Nutt S, Marvan I, Sutton P (1984) J Water Pollut Control Fed 56: 191Google Scholar
  27. 27.
    Lue-Hung C, Lordi DT, Kelada NP (1981) AIChE Symp (209) 77: 144Google Scholar
  28. 28.
    Salkinoja-Salonen MS, Hakulinen R, Vaio R, Apajalahti J (1983) Water Sci Technol 15: 309Google Scholar
  29. 29.
    Boening PH, Larsen VF (1982) Biotechnol Bioeng 24: 2539CrossRefGoogle Scholar
  30. 30.
    Duff SJB, Kennedy KJ (1982) Biotechnol Lett 4: 821CrossRefGoogle Scholar
  31. 31.
    Riera FS, Valz-Gianinet S, Gallien D, Sineriz F (1982) Biotechnol Lett 4: 127CrossRefGoogle Scholar
  32. 32.
    Callander IJ, Barford JP (1983) Biotechnol Lett 5: 755CrossRefGoogle Scholar
  33. 33.
    Lehmann V, Wellinger A (1981) Biogas production from full-scale on-farm digesters. In: Vogt F (ed) Energy conservation and use of renewable energies in the bioindustries. Pergamon, Oxford, p 353Google Scholar
  34. 34.
    Tapp MDJ (1981) A commercial biogas producing plant. In: Vogt F (ed) Energy conservation and use of renewable energies in the bioindustries. Pergamon, Oxford, p 473Google Scholar
  35. 35.
    Wase DAJ, Gordon S (1982) Biotechnol Lett 4: 436CrossRefGoogle Scholar
  36. 36.
    Verstraete W (1983) Biomethanation of wastes: perspectives and potentials. In: Biotech 83: Proc Int Conf on the Commercial Applications and Implications of Biotechnology. Online, London, p 725Google Scholar
  37. 37.
    Jewell WJ, Cummings RJ (1984) J Food Sci 49: 407CrossRefGoogle Scholar
  38. 38.
    Chian ESK, De Walle FB (1977) Water Res 11: 295CrossRefGoogle Scholar
  39. 39.
    Mosey F (1978) Water Pollut Control 80: 273Google Scholar
  40. 40.
    van den Berg L, Lentz CP (1979) Comparison between up and downflow anaerobic fixed film reactors of varying surface-to-volume ratios for the treatment of bean blanching wastes. In: Proc 34th Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1979. Ann Arbor Science, Ann Arbor Michigan, p 319Google Scholar
  41. 41.
    Dahab MF, Young JC (1982) Biotechnol Bioeng Symp 11: 381Google Scholar
  42. 42.
    Genung RK, Hancher CW, Rivera AL, Harris MT (1983) Biotechnol Bioeng Symp 12: 365Google Scholar
  43. 43.
    Harper SR, Cross WH, Pohland FG, Chian ESK (1984) Biotechnol Bioeng Symp 13: 401Google Scholar
  44. 44.
    Wheatley A (1983) Biomethanation and by-product recovery from effluents. In: Biotech 83: Proc Int Conf on commercial applications and implications of biotechnology. Online, London, p 761Google Scholar
  45. 45.
    McConville T, Maier WJ (1979) Biotechnol Bioeng Symp 8: 345Google Scholar
  46. 46.
    van den Berg L, Lentz CP, Armstrong DW (1980) Anaerobic waste treatment efficiency comparisons between fixed film reactors, contact digesters, and fully mixed continuously fed digesters. In: Proc 35th Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1980. Ann Arbor Science, Ann Arbor Michigan, p 788Google Scholar
  47. 47.
    Lettinga G, van der Geest ATh, Hobma S, van der Laan J (1979) Water Res 13: 725CrossRefGoogle Scholar
  48. 48.
    Lettinga G, de Zeeuw W, Ouborg E (1981) Water Res 15: 171CrossRefGoogle Scholar
  49. 49.
    van den Berg L, Kennedy KJ, Hamoda MF (1981) Effect of type of waste on performance of anaerobic fixed film and upflow sludge bed reactors. In: Proc 36th Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1981. Ann Arbor Science, Ann Arbor, Michigan, p 686Google Scholar
  50. 50.
    Heertjes PM, Kuijvenhoven LJ, van der Meer RR (1982) Biotechnol Bioeng 24: 443CrossRefGoogle Scholar
  51. 51.
    van den Berg L, Lentz CP (1978) Food processing waste treatment by anaerobic digestion. In: Proc 32nd Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1977. Ann Arbor Science, Ann Arbor Michigan, p 252Google Scholar
  52. 52.
    Lane AG (1984) Environ Technol Lett 5: 141CrossRefGoogle Scholar
  53. 53.
    Switzenbaum MS, Jewell WJ (1980) J Water Pollut Control Fed 52: 1953Google Scholar
  54. 54.
    Morris JW, Jewell WJ (1981) Organic particulate removal with the anaerobic attached-film expanded-bed process. In: Proc 36th Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1981. Ann Arbor Science, Ann Arbor Michigan, p 621Google Scholar
  55. 55.
    Jewell WJ, Switzenbaum MS, Morris JW (1981) J Water Pollut Control Fed 53: 482Google Scholar
  56. 56.
    Switzenbaum MS, Danskin SC (1981) Anaerobic expanded bed treatment of whey. In: Proc 36th Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1981. Ann Arbor Science, Ann Arbor Michigan, p 414Google Scholar
  57. 57.
    Schraa G, Jewell WJ (1984) J Water Pollut Control Fed 56: 226Google Scholar
  58. 58.
    Hickey RF, Owens RW (1982) Biotechnol Bioeng Symp 11: 399Google Scholar
  59. 59.
    Sutton PM, Li A (1981) Anitron system and oxitron system: high rate anaerobic and aerobic biological treatment systems for industry. In: Proc 36th Ind Waste Conf, Purdue Univ, Lafayette, Indiana. Ann Arbor Science, Ann Arbor Michigan, p 665Google Scholar
  60. 60.
    Jeris JS (1983) Water Sci Technol 15: 167Google Scholar
  61. 61.
    Salkinoja-Salonen MS, Nuys E-J, Sutton PM, van den Berg L, Wheatley AD (1983) Water Sci Technol 15: 305Google Scholar
  62. 62.
    Sutton PM, Li A, Evans RR, Korchin S (1982) Dorr-Oliver’s fixed film and suspended growth anaerobic systems for industrial wastewater treatment and energy recovery. In: Proc 37th Ind Waste Conf, Purdue Univ, Lafayette, Indiana. Ann Arbor Science, Ann Arbor Michigan, p 667Google Scholar
  63. 63.
    Bull MA, Sterriti RM, Lester JN (1983) Water Res 17: 1563CrossRefGoogle Scholar
  64. 64.
    Nutt SG, Melcer H, Pries JH (1984) J Water Pollut Control Fed 56: 851Google Scholar
  65. 65.
    Switzenbaum MS, Sheehan KC, Hickey RF (1984) Environ Technol Lett 15: 189Google Scholar
  66. 66.
    Tait SJ, Friedman AA (1980) J Water Pollut Control Fed 52: 2257Google Scholar
  67. 67.
    Martensson L, Frostell B (1983) Water Sci Technol 15: 233Google Scholar
  68. 68.
    Bull MA, Sterriti RM, Lester JN (1984) Water Res 18: 1017CrossRefGoogle Scholar
  69. 69.
    Speece RE (1983) Environ Sci Technol 17: 416CrossRefGoogle Scholar
  70. 70.
    Steinsberger SC, Shih JCH (1984) Biotechnol Bioeng 26: 537CrossRefGoogle Scholar
  71. 71.
    Genung RK, Million DL, Hancher CW, Pitt WW Jr (1979) Biotechnol Bioeng Symp 8: 329Google Scholar
  72. 72.
    Ghosh S, Sajjad A, Henry MP, Bleakney RA (1984) Biotechnol Bioeng Symp 13: 351Google Scholar
  73. 73.
    BS Flocor002FSGN (1984) Anaerobic fermentation of effluents from a sugar mill with the SGN fixed- film process. Bridgnorth, Shropshire, UK, BS Flocor Ltd.002FSociété Générale pour les Techniques NouvellesGoogle Scholar
  74. 74.
    Switzenbaum MS (1983) Water Sci Technol 15: 345Google Scholar
  75. 75.
    Sutton PM, Li A (1983) Water Sci Technol 15: 333Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Sandra M. Stronach
    • 1
  • Thomasine Rudd
    • 1
  • John N. Lester
    • 1
  1. 1.Public Health Engineering Laboratory, Department of Civil EngineeringImperial CollegeLondonUK

Personalised recommendations