Skip to main content

Part of the book series: Biotechnology Monographs ((BIOTECHNOLOGY,volume 2))

Abstract

There are several difficulties at once apparent in attempting a useful comparison of the basic reactor types discussed in the preceding chapters: one problem pertains to the characterisation of system design, the demarcation between various bioreactor types being unclear and overlap of many features occurring. The major difference, for example, between the contact and the carrier-assisted contact processes is the presence of a small quantity of inert media as support particles in the latter, a situation easily produced in the former by the introduction of nonbiodegradable suspended solids with the influent; the floc structures of both reactor configurations are practically indistinguishable. The anaerobic sludge blanket and the contact reactor have likewise many similar features, the design differences themselves being in the placement of the settling unit, i.e., internal or external to the reaction vessel. In the case of the fixed-film processes, the borderline between expanded and fluidised bed reactors is indefinite and dependent almost exclusively upon the degree of fluidisation of the carrier particles, which in turn is governed by particle density, porosity and size, and by the fluid flow rate. Other elements must necessarily enter into any qualitative comparisons made between reactor design and mode of operation: these include the strength and complexity of the waste to be treated, the influent flow rate, temperature and pH, and diurnal, seasonal or other temporal variations of these factors. Differences between reactor performances and efficiencies therefore, are not as straightforward as may be expected from design and operational variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bull MA, Sterritt RM, Lester JN (1983) J ChemTechnol Biotechnol 33B: 221

    Article  Google Scholar 

  2. Kennedy KJ, van den Berg L (1982) Water Res 16: 1391

    Article  Google Scholar 

  3. Lane AG (1983) Environ Technol Lett 4: 349

    Article  CAS  Google Scholar 

  4. Anderson GK, Donnelly T (1978) Anaerobic contact digestion for treating high strength soluble wastes. In: Mattock G (ed) New processes of wastewater treatment and recovery. Ellis Horwood, Chichester, p 75

    Google Scholar 

  5. Good P, Moudry R, Fluvi P (1982) Biotechnol Lett 4: 565

    Article  Google Scholar 

  6. Stephenson T, Lester JN (in press) Biotechnol Bioeng

    Google Scholar 

  7. Switzenbaum MS (1983) Water Sci Technol 15: 345

    CAS  Google Scholar 

  8. Heijnen JJ Development of a high rate fluidised bed biogas reactor. In: Proc Eur Symp Nov 1983, Noorwijkerhaout, Netherlands, p 259

    Google Scholar 

  9. Rittmann BE (1982) Biotechnol Bioeng 24: 1341

    Article  CAS  Google Scholar 

  10. Schwartz LJ, De Baere LA, Lanz RW (1982) Biotechnol Bioeng Symp 11: 463

    Google Scholar 

  11. Young JC, Dahab MF (1983) Biotechnol Bioeng Symp 12: 303

    Google Scholar 

  12. Messing RA (1983) Bioenergy production and pollution control with immobilized microbes. In: Tsao GT (ed) Ann reports on fermentation processes, vol 6. Academic Press, New York London, p 23

    Google Scholar 

  13. Christensen DR, Gerick JA, Eblen JE (1984) J Water Pollut Control Fed 56: 1059

    CAS  Google Scholar 

  14. Winkler M (1981) Biological treatment of wastewater. Ellis Horwood, Chichester, p 211

    Google Scholar 

  15. Parkin GF, Speece RE (1982) J Environ Eng Div ASCE 108 (EE3): 515

    CAS  Google Scholar 

  16. Lin Chou W, Speece RE, Siddiqi RH (1979) Biotechnol Bioeng Symp 8: 391

    CAS  Google Scholar 

  17. Dahab MF, Young JC (1982) Retention and distribution of biological solids in fixed film anaerobic filters. In: Proc 1st Int Conf on Fixed Film Biol Processes, Kings Island, Ohio, April 1982

    Google Scholar 

  18. Newell PJ (1981) The use of a high rate contact reactor for energy production and waste treatment from intensive livestock units. In: Vogt F (ed) Energy conservation and use of renewable energies in the bioindustries. Pergamon, Oxford, p 395

    Google Scholar 

  19. Kobayashi HA, Stenstrom MK, Mah RA (1983) Water Res 17: 903

    Article  CAS  Google Scholar 

  20. Norrman J (1983) Water Sci Technol 15: 247

    CAS  Google Scholar 

  21. Crandell CJ, Kerrigan JE, Rohlich GA (1971) Nutrient problems in meat industry wastewater. In: Proc 26th Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1971. Ann Arbor Science, Ann Arbor Michigan, p 199

    Google Scholar 

  22. Barnes D, Forster CF, Hrudey SE (1984) Survey in industrial wastewater treatment, vol 2: petroleum and organic chemicals industries. Pittmann, London, p 3

    Google Scholar 

  23. Cross WH, Chian ESK, Pohland FG, Harper S, Kharkar S, Cheng SS, Lu F (1983) Biotechnol Bioeng Symp 12: 349

    Google Scholar 

  24. Hobson PN (1982) Production of biogas from agricultural wastes. In: Subba Rao NS (ed) Advances in agricultural microbiology. Butterworth Scientific, London, p 523

    Google Scholar 

  25. Barnes D, Bliss PJ (1983) Biological control of nitrogen in wastewater treatment. E and FN Spon, London, p 130

    Google Scholar 

  26. Melcer H, Nutt S, Marvan I, Sutton P (1984) J Water Pollut Control Fed 56: 191

    Google Scholar 

  27. Lue-Hung C, Lordi DT, Kelada NP (1981) AIChE Symp (209) 77: 144

    Google Scholar 

  28. Salkinoja-Salonen MS, Hakulinen R, Vaio R, Apajalahti J (1983) Water Sci Technol 15: 309

    CAS  Google Scholar 

  29. Boening PH, Larsen VF (1982) Biotechnol Bioeng 24: 2539

    Article  CAS  Google Scholar 

  30. Duff SJB, Kennedy KJ (1982) Biotechnol Lett 4: 821

    Article  CAS  Google Scholar 

  31. Riera FS, Valz-Gianinet S, Gallien D, Sineriz F (1982) Biotechnol Lett 4: 127

    Article  Google Scholar 

  32. Callander IJ, Barford JP (1983) Biotechnol Lett 5: 755

    Article  CAS  Google Scholar 

  33. Lehmann V, Wellinger A (1981) Biogas production from full-scale on-farm digesters. In: Vogt F (ed) Energy conservation and use of renewable energies in the bioindustries. Pergamon, Oxford, p 353

    Google Scholar 

  34. Tapp MDJ (1981) A commercial biogas producing plant. In: Vogt F (ed) Energy conservation and use of renewable energies in the bioindustries. Pergamon, Oxford, p 473

    Google Scholar 

  35. Wase DAJ, Gordon S (1982) Biotechnol Lett 4: 436

    Article  CAS  Google Scholar 

  36. Verstraete W (1983) Biomethanation of wastes: perspectives and potentials. In: Biotech 83: Proc Int Conf on the Commercial Applications and Implications of Biotechnology. Online, London, p 725

    Google Scholar 

  37. Jewell WJ, Cummings RJ (1984) J Food Sci 49: 407

    Article  Google Scholar 

  38. Chian ESK, De Walle FB (1977) Water Res 11: 295

    Article  CAS  Google Scholar 

  39. Mosey F (1978) Water Pollut Control 80: 273

    Google Scholar 

  40. van den Berg L, Lentz CP (1979) Comparison between up and downflow anaerobic fixed film reactors of varying surface-to-volume ratios for the treatment of bean blanching wastes. In: Proc 34th Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1979. Ann Arbor Science, Ann Arbor Michigan, p 319

    Google Scholar 

  41. Dahab MF, Young JC (1982) Biotechnol Bioeng Symp 11: 381

    Google Scholar 

  42. Genung RK, Hancher CW, Rivera AL, Harris MT (1983) Biotechnol Bioeng Symp 12: 365

    Google Scholar 

  43. Harper SR, Cross WH, Pohland FG, Chian ESK (1984) Biotechnol Bioeng Symp 13: 401

    Google Scholar 

  44. Wheatley A (1983) Biomethanation and by-product recovery from effluents. In: Biotech 83: Proc Int Conf on commercial applications and implications of biotechnology. Online, London, p 761

    Google Scholar 

  45. McConville T, Maier WJ (1979) Biotechnol Bioeng Symp 8: 345

    CAS  Google Scholar 

  46. van den Berg L, Lentz CP, Armstrong DW (1980) Anaerobic waste treatment efficiency comparisons between fixed film reactors, contact digesters, and fully mixed continuously fed digesters. In: Proc 35th Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1980. Ann Arbor Science, Ann Arbor Michigan, p 788

    Google Scholar 

  47. Lettinga G, van der Geest ATh, Hobma S, van der Laan J (1979) Water Res 13: 725

    Article  CAS  Google Scholar 

  48. Lettinga G, de Zeeuw W, Ouborg E (1981) Water Res 15: 171

    Article  CAS  Google Scholar 

  49. van den Berg L, Kennedy KJ, Hamoda MF (1981) Effect of type of waste on performance of anaerobic fixed film and upflow sludge bed reactors. In: Proc 36th Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1981. Ann Arbor Science, Ann Arbor, Michigan, p 686

    Google Scholar 

  50. Heertjes PM, Kuijvenhoven LJ, van der Meer RR (1982) Biotechnol Bioeng 24: 443

    Article  CAS  Google Scholar 

  51. van den Berg L, Lentz CP (1978) Food processing waste treatment by anaerobic digestion. In: Proc 32nd Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1977. Ann Arbor Science, Ann Arbor Michigan, p 252

    Google Scholar 

  52. Lane AG (1984) Environ Technol Lett 5: 141

    Article  CAS  Google Scholar 

  53. Switzenbaum MS, Jewell WJ (1980) J Water Pollut Control Fed 52: 1953

    CAS  Google Scholar 

  54. Morris JW, Jewell WJ (1981) Organic particulate removal with the anaerobic attached-film expanded-bed process. In: Proc 36th Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1981. Ann Arbor Science, Ann Arbor Michigan, p 621

    Google Scholar 

  55. Jewell WJ, Switzenbaum MS, Morris JW (1981) J Water Pollut Control Fed 53: 482

    Google Scholar 

  56. Switzenbaum MS, Danskin SC (1981) Anaerobic expanded bed treatment of whey. In: Proc 36th Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1981. Ann Arbor Science, Ann Arbor Michigan, p 414

    Google Scholar 

  57. Schraa G, Jewell WJ (1984) J Water Pollut Control Fed 56: 226

    CAS  Google Scholar 

  58. Hickey RF, Owens RW (1982) Biotechnol Bioeng Symp 11: 399

    Google Scholar 

  59. Sutton PM, Li A (1981) Anitron system and oxitron system: high rate anaerobic and aerobic biological treatment systems for industry. In: Proc 36th Ind Waste Conf, Purdue Univ, Lafayette, Indiana. Ann Arbor Science, Ann Arbor Michigan, p 665

    Google Scholar 

  60. Jeris JS (1983) Water Sci Technol 15: 167

    Google Scholar 

  61. Salkinoja-Salonen MS, Nuys E-J, Sutton PM, van den Berg L, Wheatley AD (1983) Water Sci Technol 15: 305

    CAS  Google Scholar 

  62. Sutton PM, Li A, Evans RR, Korchin S (1982) Dorr-Oliver’s fixed film and suspended growth anaerobic systems for industrial wastewater treatment and energy recovery. In: Proc 37th Ind Waste Conf, Purdue Univ, Lafayette, Indiana. Ann Arbor Science, Ann Arbor Michigan, p 667

    Google Scholar 

  63. Bull MA, Sterriti RM, Lester JN (1983) Water Res 17: 1563

    Article  CAS  Google Scholar 

  64. Nutt SG, Melcer H, Pries JH (1984) J Water Pollut Control Fed 56: 851

    CAS  Google Scholar 

  65. Switzenbaum MS, Sheehan KC, Hickey RF (1984) Environ Technol Lett 15: 189

    Google Scholar 

  66. Tait SJ, Friedman AA (1980) J Water Pollut Control Fed 52: 2257

    Google Scholar 

  67. Martensson L, Frostell B (1983) Water Sci Technol 15: 233

    CAS  Google Scholar 

  68. Bull MA, Sterriti RM, Lester JN (1984) Water Res 18: 1017

    Article  CAS  Google Scholar 

  69. Speece RE (1983) Environ Sci Technol 17: 416

    Article  Google Scholar 

  70. Steinsberger SC, Shih JCH (1984) Biotechnol Bioeng 26: 537

    Article  CAS  Google Scholar 

  71. Genung RK, Million DL, Hancher CW, Pitt WW Jr (1979) Biotechnol Bioeng Symp 8: 329

    CAS  Google Scholar 

  72. Ghosh S, Sajjad A, Henry MP, Bleakney RA (1984) Biotechnol Bioeng Symp 13: 351

    Google Scholar 

  73. BS Flocor002FSGN (1984) Anaerobic fermentation of effluents from a sugar mill with the SGN fixed- film process. Bridgnorth, Shropshire, UK, BS Flocor Ltd.002FSociété Générale pour les Techniques Nouvelles

    Google Scholar 

  74. Switzenbaum MS (1983) Water Sci Technol 15: 345

    CAS  Google Scholar 

  75. Sutton PM, Li A (1983) Water Sci Technol 15: 333

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stronach, S.M., Rudd, T., Lester, J.N. (1986). Economic Considerations. In: Anaerobic Digestion Processes in Industrial Wastewater Treatment. Biotechnology Monographs, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71215-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71215-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71217-3

  • Online ISBN: 978-3-642-71215-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics