Advertisement

Cell Kinetics in Leukemia and Preleukemia

  • P. Dörmer
  • G. Ucci
  • Ch. Hershko
  • W. Wilmanns
Conference paper
Part of the Haematology and Blood Transfusion / Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 30)

Abstract

A cell lineage affected by acute leukemia is distinguished from the corresponding normal lineage by a prevalence of immature blast cells and a deficit of mature cells. Currently there are two different concepts of antileukemic therapy that might profit from a clearer understanding of the causes of the excess of blast cells. These concepts are either to sweep out the leukemic cells by cytotoxic treatment, or to induce them to differentiate in a fashion like normal cells. We are interested to know if cell kinetics can add to this understanding.

Keywords

Acute Myeloid Leukemia Label Index Acute Leukemia Acute Myeloid Leukemia Cell Leukemic Blast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brinkmann W, Dörmer P (1976) Proliferationskinetik der normalen Myelopoese des Menschen. In: Stacher A, Höcker P (Hrsg). Erkrankungen der Myelopoese. Urban und Schwarzenberg, München, S 31–33Google Scholar
  2. 2.
    Cronkite EP, Vincent PC (1969) Granulocy- topoiesis. Ser Haemat, vol 2, no 4. Munks. gaard, Copenhagen, pp 3–43Google Scholar
  3. 3.
    Dörmer P (1973) Kinetics of erythropoietic cell proliferation in normal and anemic man. A new approach using quantitative 14C-autoradiography. Prog Histochem Cytochem, vol 6, no 1: 1–83CrossRefGoogle Scholar
  4. 4.
    Dörmer P, Brinkmann W (1975) A new approach to determine cell-cycle parameters in human leukemia. In: Fliedner TM, Perry S (eds) Advances in the biosciences, vol 14. Pergamon, Oxford, pp 397–412Google Scholar
  5. 5.
    Dörmer P, Lau B, Wilmanns W (1980) Kinetics of bone marrow cell production in human acute and chronic myeloid leukemias. Leuk Res 4: 231–237PubMedCrossRefGoogle Scholar
  6. 6.
    Dörmer P, Ucci G, Lau B, Haas RJ, Janka GE (1984) In vivo production of childhood acute lymphoblastic leukemia cells in relation to ploidy and immunological subtype. Leuk Res 8: 587–595PubMedCrossRefGoogle Scholar
  7. 7.
    Fialkow PJ, Singer JW (1985) Tracing development and cell lineages in human hemopoietic neoplasia. In: Weissmann IL (ed) Leukemia. Springer, Berlin Heidelberg New York Tokyo, pp 203–222Google Scholar
  8. 8.
    Gavosto F, Pileri A, Bachi C, Pegoràro L (1964) Proliferation and maturation defect in acute leukaemic cells. Nature 203: 92–94PubMedCrossRefGoogle Scholar
  9. 9.
    Hiddemann W, Büchner T, Andreeff M, Wörmann B, Melamed MR, Clarson BD (1982) Cell kinetics in acute leukemia: a critical reevaluation based on new data. Cancer 50: 250–258PubMedCrossRefGoogle Scholar
  10. 10.
    Hiddemann W, Clarkson BD, Büchner T, Melamed MR, Andreeff M (1982) Bone marrow cell count per cubic millimeter bone marrow: a new parameter for quantitating therapy-induced cytoreduction in acute leukemia. Blood 55: 216–225Google Scholar
  11. 11.
    Lange B, Ferrero D, Pessano S, Palumbo A, Faust J, Meo P, Rovera G (1984) Surface phenotype of clonogenic cells in acute myeloid leukemia defined by monoclonal antibodies. Blood 64: 693–700PubMedGoogle Scholar
  12. 12.
    Look AT, Melvin SL, Williams DL, Brodeur GM, Dahl GV, Kalvinsky DK, Murphy S, Mauer AM (1982) Aneuploidy and percentage of S-phase cells determined by flow cytometry correlate with cell phenotype in childhood acute leukemia. Blood 60: 959–967PubMedGoogle Scholar
  13. 13.
    Löwenberg B, Baumann JGJ (1985) Further results in understanding the subpopulation structure of AML: clonogenic cells and their progeny identified by differentiation markers. Blood 66: 1225–1232PubMedGoogle Scholar
  14. 14.
    McCulloch EA, Izaguirre CA, Chang LJA, Smith U (1982) Renewal and determination in leukemic blast populations. J Cell Physiol, Suppl 1: 103–111Google Scholar
  15. 15.
    Nara N, McCulloch EA (1985) The proliferation in suspension of the progenitors of the blast cells in acute myeloblastic leukemia. Blood 66: 1484–1493Google Scholar
  16. 16.
    Sjögren U (1975) Erythroblastic islands and ineffective erythropoiesis in acute myeloid leukaemia. Acta Haemat 54: 11–17PubMedCrossRefGoogle Scholar
  17. 17.
    Sjögren U, Brand L (1974) Differences in morphology and mitotic activity between intra-and extra-medullary erythropoietic tissue in chronic myeloid leukaemia. Scand J Haemat 13: 116–120PubMedCrossRefGoogle Scholar
  18. 18.
    Ucci G, Riccardi A, Dörmer P, Danova M (1986) Rate and time of DNA synthesis of human leukaemic blasts in bone marrow and peripheral blood. Cell Tissue Kinet 19: 429–435PubMedGoogle Scholar
  19. 19.
    Wouters R, Löwenberg B (1984) On the maturation order of AML cells: A distinction on the basis of self-renewal properties and immunological phenotypes. Blood 63: 684–689Google Scholar
  20. 20.
    Yen A, Fried J, Kitahara T, Strife A, Clarkson BD (1975) The kinetic significance of cell size. I. Variation of cell cycle parameters measured at mitosis. Exp Cell Res 95: 295–302Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • P. Dörmer
    • 1
  • G. Ucci
    • 2
  • Ch. Hershko
    • 3
  • W. Wilmanns
    • 4
  1. 1.GSFInstitute for Experimental HematologyMunichFederal Republic of Germany
  2. 2.Istituto di Patologica Medica IUniversità di PaviaItaly
  3. 3.Shaare Zedek Medical CenterJerusalemIsrael
  4. 4.Medizinische Klinik IIIKlinikum GroßhadernMünchenFederal Republic of Germany

Personalised recommendations