Skip to main content

Scintigraphic Studies of Renal and Adrenal Function

  • Chapter
Renal and Adrenal Tumors
  • 122 Accesses

Abstract

Scintigraphic localization of renal and adrenal tumors is based upon the selective accumulation and excretion of specific radiopharmaceuticals designed to take advantage of the unique and multiple biologic characteristics of these tissues. In this regard the radiodiagnostic probes used to image the kidneys, adrenal cortex, and medulla are singular for each purpose. Their metabolism and pharmacology allow a glimpse into the functional status of their respective target tissues. The quantitative scintigraphic map created by the distribution of these radiopharmaceuticals represents a multifaceted approach to the determination of anatomy and function that cannot be achieved by other static, noninvasive, radiographic methods. The efficacy has been repeatedly confirmed.

Supported by NCI(CA-09015), the NIAMDD(RO1-AM-21477-RAD), the GCRX(HEW 3M01-RR-0042-21CLR), the Nuclear Medicine Research Fund, and the Veterans Administration Research Service

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Richards P, Atkins HL (1967) Technetium-99m labeled compounds. Jpn J Nucl Med 7: 165–170

    Google Scholar 

  2. Arnold RW (1975) Comparison of Tc-99m complexes for renal imaging. J Nucl Med 16: 357–367

    PubMed  CAS  Google Scholar 

  3. Lin TH, Khentigan A, Winchell HS (1974) A Tc-99m chelate substitute for organoradiomercurial renal agents. JNuc Med 15: 34–35

    CAS  Google Scholar 

  4. Burbank MK, Tauxe WN, Maher FT, Hunt JC (1961) Evaluation of radioiodinated hippuran for the estimation of renal plasma flow. Mayo Clin Proc 36: 372–386

    CAS  Google Scholar 

  5. Thakur ML, Chauser BM (1975) Synthesis of I-123 orthoiodohippurate. Int J Appl Radiat Inst 26: 319–320

    Article  CAS  Google Scholar 

  6. Beierwaltes WH, Wieland DM, Yu T, Swanson DP, Mosley S (1978) Adrenal imaging agents: rationale, synthesis, formulation and metabolism. Semin Nucl Med 8: 5–21

    Article  PubMed  CAS  Google Scholar 

  7. Gross MD, Swanson DP, Wieland DM, Beierwaltes WH (1982) The mechanisms of localization, specificity and metabolism of adrenal gland imaging agents. In: Billinghurst MW (ed) Studies of cellular function using radiotracers. CRC, Boca Raton, pp 189–224

    Google Scholar 

  8. Brown MS, Goldstein JL (1976) Receptor mediated control of cholesterol metabolism. Science 191: 150–153

    Article  PubMed  CAS  Google Scholar 

  9. Brown MS, Goldstein JL (1975) Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell 6: 307–310

    Article  PubMed  CAS  Google Scholar 

  10. Gross MD, Thrall JH, Beierwaltes WH (1980) The adrenal scan: a current status report on radiotracers, dosimetry and clinical utility. In: Freeman LM, Weissman HS (eds) Nuclear medicine annual 1980. Raven, New York, pp 127–175

    Google Scholar 

  11. Fukushi K, Irie T, Nozaki T, Ido T, Kasida Y (1979) Adrenal affinity and plasma lipoprotein binding of radiohalogen derivatives of cholesterol. J Labeled Comp 16: 49–51

    CAS  Google Scholar 

  12. Wieland DM, Wu JL, Brown LE, Mangner T, Swanson DP, Beierwaltes WH (1980) Radiolabeled adrenergic neuron blocking agents: adrenal medulla imaging with (131I)iodobenzylguanidine. J Nucl Med 21: 349–353

    PubMed  CAS  Google Scholar 

  13. Sisson JC, Frager MS, Valk TW, Gross MD, Thompson N, Beierwaltes WH (1981) Scintigraphic localization of pheochromocytoma. N Engl J Med 305: 12–17

    Article  PubMed  CAS  Google Scholar 

  14. Geatti O, Shapiro B, Sisson JC, Hutchinson RJ, Mallette S, Eyre P, Beierwaltes WH (1985) 131-I-metaiodo- benzylguanidine (131-I-mIBG) scintigraphy for the location of neuroblastoma: preliminary experience in 10 cases. J Nucl Med 26: 736–742

    PubMed  CAS  Google Scholar 

  15. Shapiro B, Sisson JC, Geatti O, Eyre P, Lynn M, Beierwaltes WH (1986) The scintigraphic imaging of pheochromocytoma by means of metaiodobenzylguanidine (mlBG) (1986) In: Winkler C (ed) Nuclear medicine in clinical oncology. Springer, Berlin Heidelberg New York Tokyo, pp 129–137

    Google Scholar 

  16. Shapiro B, Wieland DM, Brown LE, Nakajo M, Sisson JC, Beierwaltes WH (1984) 131I-meta-iodobenzylguanidine (mIBG) adrenal medullary scintigraphy: interventional studies. In: Spencer RP (ed) Interventional nuclear medicine. Grune and Stratton, New York, pp 451–482

    Google Scholar 

  17. Tobes MC, Jacques S Jr, Wieland DM, Sisson JC (1985) Effect of uptake-one inhibitors on the uptake of norepinephrine and meta-iodobenzylguanidine. J Nucl Med 26: 897–907

    PubMed  CAS  Google Scholar 

  18. Nakajo M, Shapiro B, Swanson DP, Beierwaltes WH (1982) Mechanism of 1-131-metaiodobenzylguanidine accumulation in the salivary glands. Clin Res 30: 721 A

    Google Scholar 

  19. Lynn MD, Shapiro B, Sisson JC, Swanson DP, Mangner TJ, Wieland DM, Meyer LJ, Glowniak JV, Beierwaltes WH (1985) Improved visualization of pheochromocyto- mas and normal adrenal medullae with 123I-mIBG scintigraphy. Radiology 156: 789–793

    Google Scholar 

  20. Sisson JC, Shapiro B, Beierwaltes WH, Glowniak JV, Nakajo M, Mangner T, Carey T, Swanson D, Copp JE, Satterlee WG, Wieland DM (1984) Radiopharmaceutical treatment of malignant pheochromocytoma. J Nucl Med 25: 197

    PubMed  CAS  Google Scholar 

  21. Smith HW (1951) The kidney structure and function in health and disease. Oxford University Press, New York

    Google Scholar 

  22. Tauxe WN (1985) Glomerular filtration in nuclear medicine. In: Tauxe WN, Dubovsky GV (eds) Clinical urology and nephrology. Appleton-Century-Crofts, Norwalk, Conn, pp 61–76

    Google Scholar 

  23. Fischer M, Veall N (1975) Glomerular filtration rate estimation based upon a single blood sample. Br J Med 2: 542–547

    Article  Google Scholar 

  24. Gates GF (1982) Glomerular filtration rate: estimation from functional renal accumulation of 99m Tc-DTPA. AJR 138: 565–570

    PubMed  CAS  Google Scholar 

  25. Tauxe WN (1985) Tubular function in nuclear medicine. In: Tauxe WN, Dubovsky EV (eds) Clinical urology and nephrology. Appleton-Century-Crofts, Norwalk, Conn, pp 78–82

    Google Scholar 

  26. Tauxe WN, Maher FT, Taylor WF (1971) Effective renal plasma flow: estimation from theoretical volumes of distribution of intravenously injected 131I-orthoiodohippurate. Mayo Clin Proc 46: 524–531

    PubMed  CAS  Google Scholar 

  27. Koff SA, Thrall JH, Keyes JW Jr (1979) Diuretic radionuclide urography: a noninvasive method for evaluating nephroureteral dilatation. J Urol 122: 451–455

    PubMed  CAS  Google Scholar 

  28. Thrall JH, Koff SA, Keyes JW (1981) Diuretic radionuclide urography in the differential diagnosis of hydroureteronephrosis. Semin Nucl Med 11: 89–122

    Article  PubMed  CAS  Google Scholar 

  29. Britton KE, Nimmon CC, Whitfield HN, Hendry WR, Wickham JEA (1979) Obstructive nephropathy; successful evaluation with radionuclides. Lancet I: 905–907

    Article  Google Scholar 

  30. Taylor A Jr (1985) Renal imaging with diuerocaptosuccinic acid in nuclear medicine. In: Tauxe WN, Dubovsky EV (eds) Clinical urology and nephrology. Appleton- Century-Crofts, Norwalk, Conn, pp 287–303

    Google Scholar 

  31. Gross MD, Valk TW, Swanson DP, Thrall JH, Grekin, RJ, Beierwaltes WH (1981) The role of pharmacologic manipulation in adrenal cortical scintigraphy. Semin Nucl Med 11: 128

    Article  PubMed  CAS  Google Scholar 

  32. Thrall JH, Freitas JE, Beierwaltes WH (1978) Adrenal scintigraphy. Semin Nucl Med 8: 23–41

    Article  PubMed  CAS  Google Scholar 

  33. Freitas JE, Thrall JH, Swanson DP, Rafai A, Beierwaltes WH (1978) Normal adrenal asymmetry: explanation and interpretation. J Nucl Med 19: 149–154

    PubMed  CAS  Google Scholar 

  34. Koral KF, Abukhadra H, Tuscan M, Beierwaltes WH (1982) Computing adrenal uptakes with compact, fixed- sized regions. Comput Prog Biomed 15: 73–78

    Article  CAS  Google Scholar 

  35. Gross MD, Shapiro B, Freitas JE (1985) The limited significance of assymetric adrenal visualization on dexamethasone suppression scintigraphy. J Nucl Med 26: 43–47

    PubMed  CAS  Google Scholar 

  36. Gross MD, Shapiro B (1984) Pharmacological intervention: strategies for adrenocortical imaging. In: Spencer RP (ed) Interventional nuclear medicine. Grune and Stratton, New York, pp 483–518

    Google Scholar 

  37. Gross MD, Shapiro B, Beierwaltes WH (1983) The functional characterization of the adrenal cortex by quantitative scintigraphy. In: Lawrence JH (ed) Recent advances in nuclear medicine, vol VI. Grune and Stratton, New York, pp 83–115

    Google Scholar 

  38. Gross MD, Freitas JE, Swanson DP, Brady T, Beierwaltes WH (1979) The normal dexamethasone suppression adrenal scintiscan. J Nucl Med 20: 1131–1135

    PubMed  CAS  Google Scholar 

  39. Gross MD, Shapiro B, Grekin RJ, Freitas JE, Glazer G, Beierwaltes WH, Thompson NW (1984) The scintigraphic localization of the adrenal lesion in primary aldosteronism. Am J Med 77: 839–845

    Article  PubMed  CAS  Google Scholar 

  40. Shenker Y, Gross MD, Shapiro B, Grekin R (1986) Scintigraphic localization of mineralocorticoid producing adrenal carcinoma. J Endocrinol Invest 9: 115–120

    PubMed  CAS  Google Scholar 

  41. Gross MD, Freitas JE, Swanson DP, Woodbury MC, Steingart DE, Beierwaltes WH (1981) Dexamethasone suppression adrenal scintigraphy in hyperandrogenism. J Nucl Med 22: 12–17

    PubMed  CAS  Google Scholar 

  42. Glazer HS, Weyman PJ, Sagel SS, Leutt RG, Mc Clennan BL (1983) Nonfunctioning adrenal masses: incidental discovery on computed tomography. AJR 139: 81–85

    Google Scholar 

  43. Gross MD, Wilton G, Shapiro B, Smid A, Bouffard A, Glazer G, Francis IR (1986) Adrenal Scintigraphy in the evaluation of the clinically silent adrenal mass. J Nucl Med 27: 908 (ABST)

    Google Scholar 

  44. Nakajo M, Shapiro B, Copp JE, Kalff V, Gross MD, Sisson JC, Beierwaltes WH (1983) The normal and abnormal distribution of the adrenomedullary imaging agent m-[I-131] iodobenzylguanidine (I-131-mIBG) in man: evaluation by scintigraphy. J Nucl Med 24: 672–679

    PubMed  CAS  Google Scholar 

  45. Nakajo M, Shapiro B, Glowniak J, Sisson JC, Beierwaltes WH (1983) Inverse relationship between cardiac accumulation of meta [131I] iodobenzylguanidine (I- 131-mIBG) and circulating catecholamines in suspected pheochromocytoma. J Nucl Med 24: 1127–1134

    PubMed  CAS  Google Scholar 

  46. Manger WM, Gifford RW Jr (1982) Hypertension secondary to pheochromocytoma. Bull N Y Acad Med 58: 139–158

    PubMed  CAS  Google Scholar 

  47. McEwan AJ, Shapiro B, Sisson JC, Beierwaltes WH, Ackery DM (1985) Radioiodobenzylguanidine for the scintigraphic location and therapy of adrenergic tumors. Semin Nucleic Med 15: 132–153

    Article  CAS  Google Scholar 

  48. Shapiro B, Sisson JC, Lloyd RV, Nakajo M, Satterlee W, Beierwaltes WH (1984) Malignant pheochromocytoma: clinical, biochemical and scintigraphic characterization. Clin Endocrinol 20: 189–203

    Article  CAS  Google Scholar 

  49. Valk TW, Frager MS, Gross MD, Sisson JC, Wieland DM, Swanson DP, Mangner TJ, Beierwaltes WH (1981) Spectrum of pheochromocytoma in multiple endocrine neoplasia: a scintigraphic portrayal using 131-I-metaiodobenzylguanidine. Ann Intern Med 94: 762–767

    PubMed  CAS  Google Scholar 

  50. Kalff V, Shapiro B, Lloyd RV, Sisson JC, Holland K, Nakajo M, Beierwaltes WH (1982) The spectrum of pheochromocytoma in hypertensive patients with neurofibromatosis. Arch Intern Med 142: 2092–2098

    Article  PubMed  CAS  Google Scholar 

  51. Munkner T (1985) 131I-metaiodobenzylguamdine scintigraphy of neuroblastomas. Semin Nucleic Med 15: 154–160

    Article  CAS  Google Scholar 

  52. Fischer M, Kamanabroo D, Sonderkamp M, Proske T (1984) Scintigraphic imaging of carcinoid tumors with 131-I-MIBG. Lancet 2: 165

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, M.D., Shapiro, B. (1987). Scintigraphic Studies of Renal and Adrenal Function. In: Löhr, E., Leder, LD. (eds) Renal and Adrenal Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71207-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71207-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71209-8

  • Online ISBN: 978-3-642-71207-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics