Chlamydia Trachomatis: Biology of the Agent

  • Gerald I. Byrne


The genus Chlamydia is composed of two species of morphologically and developmentally related prokaryotic microorganisms. The chlamydiae are obligate intracellular microbes capable of replication only within the confines of a membrane- bound vesicle (inclusion) in the cytoplasm of susceptible eukaryotic host cells.


Chlamydia Trachomatis Chlamydial Infection Outer Envelope Inclusion Vesicle Major Outer Membrane Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Page LA (1974) Chlamydiales. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, pp 914–918Google Scholar
  2. 2.
    Moulder JW (1982) A primer for Chlamydiae. In: Mårdh P-A et al. (eds) Chlamydial infections. Elsevier Biomedical, Amsterdam, pp 3–14Google Scholar
  3. 3.
    Schachter J, Grossman M (1981) Chlamydial infections. Annu Rev Med 32: 45–61PubMedCrossRefGoogle Scholar
  4. 4.
    Wang S-P, Grayston JT (1971) Classification of TRIC and related strains with micro immunofluorescence. In: Nichols RL (ed) Trachoma and related disorders caused by chlamydial agents. Excerpta Medica, Princeton, pp 305–321Google Scholar
  5. 5.
    Schachter J, Dawson C (1978) Human chlamydial infections. PSG, Littleton, pp 9–43Google Scholar
  6. 6.
    Darouger S, Treharne JD (1982) Cell culture methods for the isolation of C. trachomatis - a review. In: Mårdh P-A et al. (eds) Chlamydial infections. Elsevier Biomedical, Amsterdam, pp 265–274Google Scholar
  7. 7.
    Kingsbury DT, Weiss E (1968) Lack of deoxyribonucleic acid homology between species of the genus Chlamydia. J Bacteriol 96: 1421–1423PubMedGoogle Scholar
  8. 8.
    Becker Y (1978) The Chlamydia: molecular biology of procaryotic obligate parasites of eucaryo- cytes. Microbiol Rev 42: 274–306PubMedGoogle Scholar
  9. 9.
    Schachter J, Caldwell HD (1980) Chlamydiae. Annu Rev Microbiol 34: 285–309PubMedCrossRefGoogle Scholar
  10. 10.
    Storz J, Spears C (1978) Chlamydiales: properties, cycle of development and effects on eucaryotic host cells. Curr Top Microbiol Immunol 76: 167–214Google Scholar
  11. 11.
    Kuo C-C, Wang S-P, Grayston JT (1973) Effect of polycations, polyanions, and neuraminidase on the infectivity of trachoma-inclusion conjunctivitis and lymphogranuloma venereum organisms in HeLa cells: sialic acid residues as possible receptors for trachoma-inclusion conjunctivitis. Infect Immun 8: 74–79PubMedGoogle Scholar
  12. 12.
    Soderlund G, Kihlstrom E (1982) Physicochemical surface properties of elementary bodies from different serotypes of Chlamydia trachomatis and their interaction with mouse fibroblasts. Infect Immun 36: 893–899PubMedGoogle Scholar
  13. 13.
    Byrne GI, Moulder JW (1978) Parasite-specified phagocytosis of Chlamydia psittaci and Chlamydia trachomatisby L and HeLa cells. Infect Immun 19: 598–606PubMedGoogle Scholar
  14. 14.
    Byrne GI (1978) Kinetics of phagocytosis of Chlamydia psittaci by mouse fibroblasts (L cells): separation of the attachment and ingestion stages. Infect Immun 19: 607–612PubMedGoogle Scholar
  15. 15.
    Sompolinsky D, Richmond S (1974) Growth of Chlamydia trachomatis in McCoy cells treated with cytochalasin B. Appl Microbiol 28: 912–914PubMedGoogle Scholar
  16. 16.
    Stirling P, Richmond S (1977) The developmental cycle of Chlamydia trachomatis in McCoy cells treated with cytochalasin B. J Gen Microbiol 100: 31–42PubMedGoogle Scholar
  17. 17.
    Lawn AM, Blythe WA, Taverne J (1973) Interaction of TRIC agents with macrophages and BHK-21 cells observed by electron microscopy. J Hyg (Lond) 71: 515–528CrossRefGoogle Scholar
  18. 18.
    Gregory WW, Gardner M, Byrne GI, Moulder JW (1979) Arrays of hemispheric surface projections on Chlamydia psittaci and Chlamydia trachomatis observed by scanning electron microscopy. J Bacteriol 138: 241–244PubMedGoogle Scholar
  19. 19.
    Evans RT (1980) Suppression of Chlamydia trachomatis inclusion formation by fetal calf serum in cycloheximide-treated McCoy cells. J Clin Microbiol 11: 424–425PubMedGoogle Scholar
  20. 20.
    Evans RT, Taylor-Robinson D (1979) Comparison of various McCoy cell treatment procedures used for detection of Chlamydia trachomatis. J Clin Microbiol 10: 198–201PubMedGoogle Scholar
  21. 21.
    Evans RT, Taylor-Robinson D (1980) Detection of Chlamydia trachomatis in rapidly produced McCoy cell monolayers. J Clin Pathol 33: 591–594PubMedCrossRefGoogle Scholar
  22. 22.
    LaScolea LJ Jr, Keddell JE (1981) Efficacy of various cell culture procedures for detection of Chlamydia trachomatis and applicability to diagnosis of pediatric infections. J Clin Microbiol 13: 705–708Google Scholar
  23. 23.
    Rota TR, Nichols RL (1973) Chlamydia trachomatis in cell culture. I. Comparison of efficiencies of infection in several defined media, at various pH and temperature values, and after exposure to diethylaminoethyl-dextran. Appl Microbiol 26: 560–565PubMedGoogle Scholar
  24. 24.
    Bose SK, Liebhaber H (1979) Deoxyribonucleic acid synthesis, cell cycle progression, and division of chlamydia-infected HeLa 229 cells. Infect Immun 24: 953–957PubMedGoogle Scholar
  25. 25.
    Garrett AJ (1975) Some properties of the polysaccharide from cell cultures infected with TRIC agent (Chlamydia trachomatis). J Gen Microbiol 90: 133–139PubMedGoogle Scholar
  26. 26.
    Gordon FB, Quan AL (1965) Occurrence of glycogen in inclusions of the psittacosis-lympho- granuloma venereum-trachoma agents. J Infect Dis 115: 186–196PubMedCrossRefGoogle Scholar
  27. 27.
    Matsumoto A (1981) Isolation and electron microscopic observations of intracytoplasmic inclusions containing Chlamydia psittaci. J Bacteriol 145: 605–612PubMedGoogle Scholar
  28. 28.
    Hatch TP (1975) Utilization of L-cell nucleotide triphosphates by Chlamydia psittaci for ribonucleic acid synthesis. J Bacteriol 122: 393–400PubMedGoogle Scholar
  29. 29.
    Kuo C-C (1979) Interaction of Chlamydia trachomatis and mouse peritoneal macrophages. In: Schlessinger D (ed) Microbiology. ASM, Washington, pp 116–119Google Scholar
  30. 30.
    Yong EC, Klebanoff SJ, Kuo C-C (1982) Toxic effect of human polymorphonuclear leukocytes on Chlamydia trachomatis. Infect Immun 37: 422–426PubMedGoogle Scholar
  31. 31.
    Rothermel CD, Byrne GI, Havell EA (1982) Effect of fibroblast interferon on Chlamydia trachomatis replication in mouse fibroblasts (L cells). Infect Immun 39: 362–370Google Scholar
  32. 32.
    Byrne GI, FaubionCL (1982) Lymphokine-mediated microbistatic mechanisms restrict Chlamydia psittaci replication in macrophages. J Immunol 128: 469–474PubMedGoogle Scholar
  33. 33.
    Byrne GI, Faubion CL (1982) Lymphokine-mediated inhibition of Chlamydia psittaci replication in macrophages. In: Mårdh P-A, Holmes KK, Oriel JD, Piot P, Schachter J (eds) Chlamydial infections. Elsevier Biomedical, Amsterdam, pp 19–24Google Scholar
  34. 34.
    Moulder JW, Levy NJ, Shulman LP (1980) Persistent infection of mouse fibroblast (L cells) with Chlamydia psittaci: evidence for a cryptic chlamydial form. Infect Immun 30: 874–883PubMedGoogle Scholar
  35. 35.
    Wyrick PB, Sixby JW, Davis CH, Rump B, Walton LA (1982) Growth of Chlamydia trachomatis in human epithelial cell monolayers. In: Mårdh P-A et al. (eds) Chlamydial infections. Elsevier Biomedical, Amsterdam, pp 275–278Google Scholar
  36. 36.
    Weigent DA, Jenkin HM (1978) Contrast of glycogenesis and protein synthesis in monkey kidney cells and HeLa cells infected with Chlamydia trachomatis lymphogranuloma venereum. Infect Immun 20: 632–639PubMedGoogle Scholar
  37. 37.
    Fan VSC, Jenkin HM (1974) Lipid metabolism of monkey kidney cells (LLC-MK-2) infected with Chlamydia trachomatis strain lymphogranuloma venereum. Infect Immun 10: 464–470PubMedGoogle Scholar
  38. 38.
    Hatch TP (1982) Host free activities of Chlamydia. In: Mårdh P-A et al. (eds) Chlamydial infections. Elsevier Biomedical, Amsterdam, pp 25–28Google Scholar
  39. 39.
    Hatch TP, Al-Hossainy E, Silverman JA (1982) Adenine nucleotide and lysine transport in Chlamydia psittaci. J Bacteriol 150: 662–670PubMedGoogle Scholar
  40. 40.
    Kingsbury DT (1969) Estimate of the genome size of various microorganisms. J Bacteriol 98: 1400–1401PubMedGoogle Scholar
  41. 41.
    Kuo C-C, Wang S-P, Grayston JT (1977) Anti-microbial activity of several antibiotics and a sulfonamide against C. trachomatis in cell culture. Antimicrob Agents Chemother 12: 80–83PubMedGoogle Scholar
  42. 42.
    Dhir SP, Hakomori H, Kenny GE, Grayston JT (1972) Immunochemical studies on chlamydial group antigen (presence of a 2-keto-3-deoxycarbohydrate as immunodominant group). J Immunol 109: 116–122PubMedGoogle Scholar
  43. 43.
    Stuart ES, MacDonald AB (1982) Isolation of a possible group antigenic determinant of Chlamydia trachomatis. In: Mårdh P-A et al. (eds) Chlamydial infections. Elsevier Biomedical, Amsterdam, pp 57–60Google Scholar
  44. 44.
    Caldwell HD, Kuo C-C, Kenny GE (1975) Antigenic analysis of chlamydiae by two dimensional Immunoelectrophoresis. J Immunol 115: 963–968PubMedGoogle Scholar
  45. 45.
    Caldwell HD, Kuo C-C, Kenny GE (1975) Antigenic analysis of chlamydiae by two-dimensional Immunoelectrophoresis. II. A trachoma-LGV-specific antigen. J Immunol 115: 969–975PubMedGoogle Scholar
  46. 46.
    Sacks DL, MacDonald AB (1979) Isolation of a type-specific antigen from Chlamydia trachomatis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol 122: 136–139PubMedGoogle Scholar
  47. 47.
    Sacks DL, Rota TR, MacDonald AB (1978) Separation and partial characterization of a type- specific antigen from Chlamydia trachomatis. J Immunol 121: 204–208PubMedGoogle Scholar
  48. 48.
    Hourihan JT, Rota TR, MacDonald AB (1980) Isolation and purification of a type-specific antigen from Chlamydia trachomatis propagated in cell culture utilizing molecular shift chromatography. J Immunol 124: 2399–2404PubMedGoogle Scholar
  49. 49.
    Garrett AJ, Harrison MJ, Manire GP (1974) A search for the bacterial mucopeptide component, muramic acid, in Chlamydia. J Gen Microbiol 80: 315–318PubMedGoogle Scholar
  50. 50.
    Hatch TP, Vance DW, Al-Houssainy E (1981) Identification of a major envelope protein in Chlamydia spp. J Bacteriol 146: 426–429PubMedGoogle Scholar
  51. 51.
    Caldwell HD, Kromhout J, Schächter J (1981) Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31: 1161–1176PubMedGoogle Scholar
  52. 52.
    Matsumoto A, Higashi N (1975) Morphology of the envelopes of chlamydial organisms as revealed by freeze-etching techniques and scanning electron microscopy. Ann Rep Inst Virus Res Kyoto University 18: 51–61Google Scholar
  53. 53.
    Moulder JW, Novosel DL, Officer JE (1963) Inhibition of the growth of agents of the psittacosis group by D-cycloserine and its specific reversal by D-alanine. J Bacteriol 85: 707–711PubMedGoogle Scholar
  54. 54.
    Shiao LC, Wang S-P, Grayston JT (1967) Sensitivity and resistance of TRIC agents to penicillin, tetracycline, and sulfa drugs. Am J Ophthalmol 63: 1558–1568PubMedGoogle Scholar
  55. 55.
    Matsumoto A, Manire GP (1970) Electron microscopic observation on the effects of penicillin on the morphology of Chlamydia psittaci. J Bacteriol 101: 278–285PubMedGoogle Scholar
  56. 56.
    Johnson FWA, Hobson D (1977) The effect of penicillin on genital strains of Chlamydia trachomatis in cell culture. J Antimicrob Chemother 3: 49–56PubMedCrossRefGoogle Scholar
  57. 57.
    Barbour AG, Amano KI, Hackstadt T, Perry L, Caldwell HD (1982) Chlamydia trachomatis has penicillin binding proteins but not detectable muramic acid. J Bacteriol 151: 420–428PubMedGoogle Scholar
  58. 58.
    Wenman WM, Lovett MA (1982) Cloning of Chlamydia trachomatis antigens recognized during human infections. In: Mårdh P-A et al. (eds) Chlamydial infections. Elsevier Biomedical, Amsterdam, pp 65–68Google Scholar
  59. 59.
    Stephens RS, Tom MR, Kuo C-C, Nowinski RC (1982) Monoclonal antibodies to Chlamydia trachomatis: antibody specificities and antigen characterization. J Immunol 128: 1083–1089PubMedGoogle Scholar
  60. 60.
    Tam MR, Stevens RS, Juo C-C, Holmes KK, Stamm WE, Nowinski RC (1982) Use of monoclonal antibodies to Chlamydia trachomatis as immunodiagnostic reagents. In: Mårdh P-A et al. (eds) Chlamydial infections. Elsevier Biomedical, Amsterdam, pp 317–320Google Scholar
  61. 61.
    Ward M (1982) Mechanisms governing HeLa cell susceptibility to chlamydial infection. In: Mårdh P-A et al. (eds) Chlamydial infections. Elsevier Biomedical, Amsterdam, pp 57–60Google Scholar
  62. 62.
    Pearce JH, Allen I (1982) Differential amino acid requirements of chlamydiae: regulation of growth and relationship with clinical syndrome. In: Mårdh P-A et al. (eds) Chlamydial infections. Elsevier Biomedical, Amsterdam, pp 29–32Google Scholar
  63. 63.
    Larsson L, Jimenez J, Odham G, Westerdahl G, Mårdh P-A (1982) Preliminary studies on cellular lipids of Chlamydia trachomatis using capillary gas chromatography. In : Mårdh P-A et al. (eds) Chlamydial infections. Elsevier Biomedical, Amsterdam, pp 37–40Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Gerald I. Byrne
    • 1
  1. 1.Department of Medical Microbiology, Medical SchoolUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations