Insect Flight pp 242-252 | Cite as

Dispersal of Insects of Public Health Importance

  • W. Stein
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Dispersal, irrespective of its method of occurrence, is an integral part of the life-history patterns of all living organisms. It is generally accepted that dispersal has three main consequences that are significant in the survival of species: avoidance of crowding, expansion of the range of distribution and recolonization of appropriate biotopes, and the flow of genetic material within and between the colonized biotopes. In adaptive dispersal, also referred to as migration (Johnson 1969), a species changes its biotope or moves into another geographical area. Migration also enables a species to escape unfavourable conditions (Kennedy 1961), and some insect species migrate in search of hibernation sites (Schneider 1962, Stein 1971).


Flight Activity Public Health Importance Musca Domestica Hibernation Site Insect Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey DL, Whitfield TL, Smittle BJ (1973) Flight and dispersal of the stable fly. J Econ Entomol 66:410–411.Google Scholar
  2. Berlyn AD (1978) The flight activity of the sheep headfly, Hydrotaea irritans (Fallen) (Diptera: Muscidae). Bull Entomol Res 68:219–228.CrossRefGoogle Scholar
  3. Bidlingmayer WL, Hem DG (1979) Mosquito (Diptera:Culicidae) flight behaviour near conspicuous objects. Bull Entomol Res 69:691–700.CrossRefGoogle Scholar
  4. Bishopp FC, Laake EW (1921) Dispersion of flies by flight. J Agric Res 21:729–766.Google Scholar
  5. Brust RA (1980) Dispersal behavior of adult Aedes sticticus and Aedes vexans (Diptera:Culicidae) in Manitoba. Can Entomol 112:31–42.CrossRefGoogle Scholar
  6. Burnett AM, Hays KL (1974) Some influences of meteorological factors on flight activity of female horse flies (Diptera:Tabanidae). Environ Entomol 3:515–521.Google Scholar
  7. Chamberlain WF (1981) Dispersal of horn flies: Effect of host proximity. Southwest Entomol 6: 316–325.Google Scholar
  8. Chamberlain WF (1984) Dispersal of horn flies III. Effect of environmental factors. Southwest Entomol 9:73–78.Google Scholar
  9. Dalmat HT (1950) Studies on the flight range of certain Simuliidae, with the use of aniline dye marker. Ann Entomol Soc Am 43:537–545.Google Scholar
  10. Davidson G (1976) Vector-borne diseases and need to control them. In: Gunn DL, Stevens JGR (eds) Pesticides and human welfare. Oxford University Press, pp 29-41.Google Scholar
  11. Digby PSB (1958a) Flight activity in the blowfly Calliphora erythrocephah, in relation to light and radiant heat, with special reference to adaptation. J Exp Biol 35:1–19.Google Scholar
  12. Digby PSB (1958b) Flight activity in the blowfly, Calliphora erythrocephala, in relation to wind speed, with special reference to adaptation. J Exp Biol 35:776–795.Google Scholar
  13. Dingle H (1972) Migration strategies of insects. Science 175:1327–1335.PubMedCrossRefGoogle Scholar
  14. Dorner RW, Mulla MS (1962) Laboratory study of wind velocity and temperature preference of Hippelates eye gnats. Ann Entomol Soc Am 55:36–39.Google Scholar
  15. Dow RP (1959) Dispersal of adult Hippelates pusio, the eye gnat. Ann Entomol Soc Am 52:372–383.Google Scholar
  16. El-Dessouki S, Stein W (1978) Untersuchungen über die Insektenfauna von Mülldeponien III. Die Ausbreitung von Fliegen einer Rottedeponie (Dipt., Muscidae und Calliphoridae). Z Angew Zool 65:367–375.Google Scholar
  17. Garms R, Walsh JF, Davies JB (1979) Studies on the reinvasion of the onchocerciasis control programme in the Volta River Basin by Simulium damnosum s.l. with emphasis on the Southwestern areas. Tropenmed Parasitol 30:345–362.PubMedGoogle Scholar
  18. Greenberg B, Bornstein AA (1964) Fly dispersion from a rural Mexican slaughterhouse. Am J Trop Med Hyg 13:881–886.PubMedGoogle Scholar
  19. Haschemi H (1981) Untersuchungen zur Biotopbindung von Lucilia- Arten(Dipt., CalMphoridae). Thesis, J-Liebig-University, Gießen.Google Scholar
  20. Hightower BG, Adams AL, Alley DA (1965) Dispersal of released irradiated laboratory-reared screw-worm flies. J Econ Entomol 58:373–374.Google Scholar
  21. Hindle E, Merriman G (1914) The range of flight of Musca domestica. J Hyg 14:23–45.CrossRefGoogle Scholar
  22. Hoelscher CE, Combs RL Jr, Brazzel JR (1968) Horn fly dispersal. J Econ Entomol 61:370–373.Google Scholar
  23. Horsfall WR (1954) A migration of Aedes vexans Meigen. J Econ Entomol 47:544.Google Scholar
  24. Johnson CG (1963) Physiological factors in insect migration by flight. Nature 28:26–27.Google Scholar
  25. Johnson CG (1969) Migration and dispersal of insects by flight. Methuen, London.Google Scholar
  26. Kennedy JS (1961) A turning point in the study of insect migration. Nature 189:785–791.CrossRefGoogle Scholar
  27. Killough RA, Hartsock JG, Wolf WW, Smith JW (1965) Face fly dispersal, nocturnal resting places, and activity during sunset as observed in 1963. J Econ Entomol 58:711–715.Google Scholar
  28. Kinzer HG, Reeves JM (1974) Dispersal and host location of the horn fly. Environ Entomol 3: 107–111.Google Scholar
  29. Lewis T, Taylor LR (1965) Diurnal periodicity of flight of insects. Trans R Entomol Soc Lond 116: 393–479.CrossRefGoogle Scholar
  30. Lindquist AE, Yates WW, Hoffman RA (1951) Studies on the flight habits of three species of flies tagged with radioactive phosphorus. J Econ Entomol 44:397–400.Google Scholar
  31. MacLeod J, Donnelly J (1958) Local distribution and dispersal paths of blowflies in hill country. J Anim Ecol 27:349–374.CrossRefGoogle Scholar
  32. Nayar JK, Sauerman DM Jr (1969) Flight behaviour and phase polymorphism in the mosquito Aedes taeniorhynchus. Entomol Exp Appl 12:365–375.CrossRefGoogle Scholar
  33. Nielsen ET, Greve H (1950) Studies on the swarming habits of mosquitoes and other Nematocera. Bull Entomol Res 41:227–258.CrossRefGoogle Scholar
  34. Nogge G, Staack W (1969) Das Flugverhalten der Dasselfliege (Hypoderma Latreille) (Diptera, Hypodermatidae) und das Biesen der Rinder. Behaviour 35:200–211.CrossRefGoogle Scholar
  35. Parker RR (1916) Dispersion of Musca domestica Linnaeus under city conditions in Montana. J Econ Entomol 9:325–362.Google Scholar
  36. Petersen M, Buschinger A (1971) Untersuchungen zur Koloniegründung der Pharaoameise Monomorium pharaonis (L.). Anz Schädlingskd Pflanzenschutz 44:121–127.CrossRefGoogle Scholar
  37. Pickens LG, Morgan NO, Hartsock JG, Smith JW (1967) Dispersal patterns and populations of the housefly affected by sanitation and weather in rural Maryland. J Econ Entomol 60:1250–1255.Google Scholar
  38. Provost MW (1952) The dispersal of Aedes taeniorhynchus I. Preliminary studies. Mosq News 12: 174–190.Google Scholar
  39. Provost MW (1957) The dispersal of Aedes taeniorhynchus II. The second experiment. Mosq News 17:233–247.Google Scholar
  40. Quarterman KD, Mathis W, Kilpatrick JW (1954) Urban fly dispersal in the area of Savannah, Georgia. J Econ Entomol 47:405–412.Google Scholar
  41. Quraishi MS, Faghih MA, Esghi N (1966) Flight range, length of gonotrophic cycles, and longevity of P32 — labelled Anopheles stephensis mysorensis. J Econ Entomol 59:50–55.PubMedGoogle Scholar
  42. Radvan R (1960) Epidemiological importance of spread and transmission of bacteria surviving during the development of flies. Cesk Epidemiol Mikrobiol Immunol 9:497–500.Google Scholar
  43. Rockel EG, Hansens EJ (1970) Emergence and flight activity of salt-marsh horse flies and deer flies. Ann Entomol Soc Am 63:27–31.Google Scholar
  44. Rowley WA, Graham CL (1968a) The effect of age on the flight performance of females Aedes aegypti mosquitoes. J Insect Physiol 14:719–728.PubMedCrossRefGoogle Scholar
  45. Rowley WA, Graham CL (1968b) The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J Insect Physiol 14:1251–1257.PubMedCrossRefGoogle Scholar
  46. Saunders DS (1982) Insect clocks, 2nd edn. Pergamon, Oxford.Google Scholar
  47. Schaefer GW, Bent GA (1984) An infra-red remote sensing system for the active detection and automatic determination of insect flight trajectories (IRADIT). Bull Entomol Res 74:261–278.CrossRefGoogle Scholar
  48. Schneider F (1962) Dispersal and migration. Annu Rev Entomol 7:223–242.CrossRefGoogle Scholar
  49. Schoof HF (1959) How far do flies fly? Pest Control 27:16–22.Google Scholar
  50. Sehoof HF, Mail GA (1953) Dispersal habits of Phormia regina in Charleston, West Virginia. J Econ Entomol 46:258–262.Google Scholar
  51. Schoof HF, Siverly RE, Jensen JA (1952) House fly dispersion studies in metropolitan areas. J Econ Entomol 45:675–683.Google Scholar
  52. Shemanchuk JA, Fredeen FJH, Kristjanson AM (1955) Studies on flight range and dispersal habits of Aedes flavescens (Muller) (Diptera: Culicidae) tagged with radio-phosphorus. Can Entomol 87:376–379.CrossRefGoogle Scholar
  53. Shura-Bura BL (1955) Untersuchungen über die Migration von Fliegen von einem Müllplatz aus mittels Markierung (russ) Gig Sanit 9:12–15.PubMedGoogle Scholar
  54. Shura-Bura BL, Ivanova EV, Onutshin AN, Glazunova AJ, Shaikov AD (1956) Migration of flies of medical importance (Diptera, Muscidae, Calliphoridae, Sarcophagidae) in Leningrad district. Entomol Obozr 35:334–346.Google Scholar
  55. Shura-Bura BL, Shaikov AD, Ivanova EV, Glazunova AI, Mitriukova MS, Fedorova KG (1958) The character of dispersion from the point of release in certain species of flies of medical importance. Entomol Obozr 37:282–290.Google Scholar
  56. Simmonds M, Stein W (1981) Ein Beitrag zur Hygienesituation auf Autobahnparkplätzen I. Das Vorkommen hygienisch bedenklicher Fliegen. Forum Städte-Hyg 32:174–180.Google Scholar
  57. Smittle BJ, Hill SO, Philips FM (1967) Migration and dispersal patterns of the Fe59-labeled lone star ticks. J Econ Entomol 60:1029–1031.Google Scholar
  58. Stein W (1971) Das Ausbreitungs-und Wanderverhalten von Curculioniden und seine Bedeutung für die Besiedlung neuer Lebensräume. In: den Boer PJ (ed) Dispersal and dispersal power of carabid beetles. Misc Pap 8, Landbouwhogeschool Wageningen, pp 111-118.Google Scholar
  59. Stein W, Danthanarayana W (1974) Untersuchungen über die Insekten-Fauna von Mülldeponien I Freilassung von markierten Lucilia sericata (Meig.) (Dipt., Calliphoridae) außerhalb einer Deponie. Z Angew Zool 61:407–417.CrossRefGoogle Scholar
  60. Taylor LR (1974) Insect migration, flight periodicity and the boundary layer. J Anim Ecol 43: 225–238.CrossRefGoogle Scholar
  61. Tugwell P, Burns EC, Witherspoon B (1966) Notes on the flight behavior of the horn fly, Haematobia irritans (L.) (Diptera: Muscidae). J Kans Entomol Soc 39:561–565.Google Scholar
  62. Wellington WG (1944) The effect of ground temperature inversions upon the flight activity of Culex sp. (Diptera, Culicidae). Can Entomol 76:223.CrossRefGoogle Scholar
  63. Wehner R (1984) Astronavigation in insects. Annu Rev Entomol 29:277–298.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • W. Stein
    • 1
  1. 1.Institut für Phytopathologie und Angewandte ZoologieJustus-Liebig-Universität GießenGießenGermany

Personalised recommendations