Expression of T-Cell Receptor by a Mouse Monoclonal Antigen-Specific Suppressor T-Cell Line

  • L. Adorini
  • G. Palmieri
  • A. Sette
  • E. Appella
  • G. Doria
Conference paper
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 126)


The antigen receptor expressed by mouse T lymphocytes is composed of a disul- fide-linked dimer of about 85K, resolved under reducing conditions in two sub-units with an apparent Mr of approximately 42K (Allison et al. 1982; Kappler et al. 1983). The antigen-specific receptor expressed by human T lymphocytes displays a similar structure, but the two subunits, denominated α and β chain, have a Mr of about 51K and 43K, respectively (Meuer et al. 1983; Acuto et al. 1983).


Suppressive Activity Antigen Receptor Antipeptide Antibody Parathymic Lymph Node Afferent Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acuto O, Hussey RE, Fitzgerald KA, Protentis JP, Meuer SC, Schlossman SF, Reinherz EL (1983) The human T cell receptor: appearance in ontogeny and biochemical relationship of a and β sub- units on IL-2 dependent clones and T cell tumors. Cell 34: 717–726PubMedCrossRefGoogle Scholar
  2. Adorini L, Harvey MA, Miller A, Sercarz EE (1979) The specificity of regulatory T cells. II. Suppressor and helper T cells are induced by different regions of hen egg-white lysozyme in a genetically non responder mouse strain. J Exp Med 150: 293-306Google Scholar
  3. Adorini L, Harvey MA, Rozycka-Jackson D, Miller A, Sercarz EE (1980) Differential major histocompatibility complex-related activation of idiotypie suppressor T cells. Suppressor T cells cross- reactive to two distantly related lysozymes are not induced by one of them. J Exp Med 152: 521–531Google Scholar
  4. Adorini L, Doria G, Ricciardi-Castagnoli P (1982) Fine antigenic specificity and genetic restriction of lysozyme-specific suppressor T cell factor produced by radiation leukemia virus-transformed suppressor T cells. Eur J Immunol 12: 719–724PubMedCrossRefGoogle Scholar
  5. Adorini L, Pini C, De Santis R, Robbiati F, Doria G, Ricciardi-Castagnoli P (1983) Monoclonal suppressor T cell factor displaying V restriction and fine antigenic specificity in immunosuppression. Nature 303: 704–706PubMedCrossRefGoogle Scholar
  6. Adorini L, Colizzi V, Doria G, Ricciardi-Castagnoli P (1984) Immunoregulation of lysozyme-specific suppression. II. Hen egg-white lysozyme-specific monoclonal suppressor T cell factor suppresses the afferent phase of delayed-type hypersensitivity and induces second-order suppressor T cells. Eur J Immunol 14: 826–830Google Scholar
  7. Allison JP, Mclntyre BW, Bloch D (1982) Tumor-specific antigen of murine T-lymphoma defined with monoclonal antibody. J Immunol 129: 2293–2300PubMedGoogle Scholar
  8. Ballinari D, Castelli C, Traversari C, Pierotti MA, Parmiani G, Palmieri G, Ricciardi-Castagnoli P, Adorini L (1985) Disulfide-linked surface molecules of monoclonal antigen-specific suppressor T cells: evidence for T cell receptor structures. Eur J Immunol 15: 855–860PubMedCrossRefGoogle Scholar
  9. Chien Y, Becker DM, Lindsten T, Okamura M, Cohen DI, Davis MM (1984) A third type of murine T cell receptor gene. Nature 312: 31–35PubMedCrossRefGoogle Scholar
  10. De Santis R, Givol D, Hsu P-L, Adorini L, Doria G, Appella E (1985) Rearrangement and expression of the a and β genes of the T cell receptor in functional mouse T suppressor clones. Proc Natl Acad Sci USA 82: 8638–8642PubMedCrossRefGoogle Scholar
  11. Hedrick SM, Cohen DI, Nielsen EA, Davis MM (1984) Isolation of cDNA clones encoding T cell-specific membrane associated proteins. Nature 308: 149–153PubMedCrossRefGoogle Scholar
  12. Hedrick SM, Germain RN, Bevan MJ, Dorf M, Engel I, Fink P, Gascoigne N, Heber-Katz E, Kapp J, Kaufmann Y, Kaye J, Melchers F, Pierce C, Schwartz RH, Sorensen C, Taniguchi M, Davis MM (1985) Rearrangement and transcription of a T cell receptor beta gene in different T cell subsets. Proc Natl Acad Sci USA 82: 531–535PubMedCrossRefGoogle Scholar
  13. Hill SW, Sercarz EE (1975) Fine specificity of the H-2 linked immune response gene for the gallinaceous lysozymes. Eur J Immunol 5: 317–324PubMedCrossRefGoogle Scholar
  14. Kappler J, Kubo R, Haskins K, White J, Marrack P (1983) The mouse T cell receptor: comparison of MHC-restricted receptors on two T cell hybridomas. Cell 34: 727–737PubMedCrossRefGoogle Scholar
  15. Klyczek KK, Cantor H, Hayes CE (1984) T cell surface I-J glycoprotein: concerted action of chromosome 4 and 17 genes forms an epitope dependent on D-mannosyl residues. J Exp Med 159: 1604–1617PubMedCrossRefGoogle Scholar
  16. Kronenberg M, Steinmetz M, Kobori J, Kraig E, Kapp JA, Pierce CW, Sorensen CM, Suzuki G, Tada T, Hood L (1983) RNA transcripts for I-J polypeptides are apparently non encoded between the I-A and I-E subregions of the murine major histocompatibility complex. Proc Natl Acad Sci USA 80: 5704–5708PubMedCrossRefGoogle Scholar
  17. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132PubMedCrossRefGoogle Scholar
  18. Mclntyre BW, Allison JP (1983) The mouse T cell receptor: structural heterogeneity defined by xenoantisera. Cell 34: 739–746CrossRefGoogle Scholar
  19. Merrifield RB (1969) Solid-phase peptide synthesis. Adv Enzymol 32: 221PubMedGoogle Scholar
  20. Meuer SC, Fitzgerald KA, Hussey RE, Hodgdon JC, Schlossman SF, Reinherz EL (1983) Clono- typic structures involved in antigen-specific human T cell function. Relationship to the T3 molecular complex. J Exp Med 157: 705–719PubMedCrossRefGoogle Scholar
  21. Phillips DR, Agin PP (1977) Platelet plasma membrane glycoproteins. Evidence for the presence of nonequivalent disulfide bonds using nonreduced-reduced two-dimensional gel electrophoresis. J Biol Chem 252: 2121–2126Google Scholar
  22. Ricciardi-Castagnoli P, Doria G, Adorini L (1981) Production of antigen-specific suppressive T cell factor by radiation leukemia virus-transformed suppressor T cells. Proc Natl Acad Sci USA 78: 3804–3808PubMedCrossRefGoogle Scholar
  23. Ricciardi-Castagnoli P, Robbiati F, Barbanti E, Colizzi V, Pini C, De Santis R, Doria G, Adorini L (1985) Immunosuppression by cell-free translation products from monoclonal antigen-specific suppressor T cell mRNAs. Eur J Immunol 15: 351–355PubMedCrossRefGoogle Scholar
  24. Royer HD, Bensussan A, Acuto O, Reinherz EL (1984) Functional isotypes are not encoded by the constant region genes of the subunit of the T cell receptor for antigen/major hystocompatibility complex. J Exp Med 160: 947–952PubMedCrossRefGoogle Scholar
  25. Sette A, Colizzi V, Appella E, Doria G, Adorini L (1986) Analysis of lysozyme-specific immune responses by synthetic peptides. I. Characterization of antibody and T cell-mediated responses to the N-terminal peptide of hen egg-white lysozyme. Eur J Immunol 16: 1–6Google Scholar
  26. Sim GK, Yagüe J, Nelson J, Marrack P, Palmer E, Augustin A, Kappler J (1984) Primary structure of human T cell receptor a chain. Nature 312: 771–775PubMedCrossRefGoogle Scholar
  27. Yanagi Y, Yoshikai Y, Leggett K, Clark SP, Aleksander I, Mak TW (1984) A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature 308: 145–149PubMedCrossRefGoogle Scholar
  28. Yoshikai Y, Yanagi Y, Sociu-Foca N, Mak TW (1984) Presence of T cell receptor mRNA in functionally distinct T cells and elevation during intrathymic differentiation. Nature 310: 506–508PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • L. Adorini
    • 1
  • G. Palmieri
    • 1
  • A. Sette
    • 1
  • E. Appella
    • 2
  • G. Doria
    • 1
  1. 1.Laboratory of Pathology, CRE CasacciaENEA-Euratom Immunogenetics GroupRome A.DItaly
  2. 2.Laboratory of Cell BiologyNCI, NIHBethesdaUSA

Personalised recommendations