Advertisement

High Resolution Biological X-Ray Microanalysis of Diffusable Ions

  • D. E. Johnson
  • M. E. Cantino

Abstract

Analytical Electron Microscopy (AEM) is developing as an important tool in the study of ion distributions and regulation in biological systems. This approach combines the spatial resolving power of electron microscope techniques with analytical instrumentation, in order to answer questions regarding elemental composition of specific subcellular regions. In this chapter we will limit our discussion to the study of distributions of diffusable elements and to high spatial resolution techniques (≈ 10 to 100 nm), which are typically applied using combined conventional transmission and scanning transmission electron imaging modes. Also, our discussion will be limited to one analytical technique, Energy Dispersive X-ray Spectrometry (EDS). Both the sensitivity and the limitations of the EDS technique will be discussed.

Keywords

Acrosome Reaction Freezing Rate Minimum Detectable Concentration Rapid Freezing Electron Probe Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews SB, Kirk RG (1981) Electron microprobe analysis of secretary epithelia: Avian salt gland. In: Hutchinson TE, Somlyo AP (eds) Microprobe Analysis of Biological Systems. Academic, New York, pp 21–46Google Scholar
  2. Appleton TC (1974) A cryostat approach to ultrathin ‘dry’ frozen sections for electron microscopy: A morphological and X-ray analytical study. J Micros 100:49–74CrossRefGoogle Scholar
  3. Bachmann L, Schmitt WW (1971) Improved cryofixation applicable to freeze etching Proc Natl Acad Sci 6B:2l49–2152Google Scholar
  4. Barnard T, Seveus L (1978) Preparation of biological material for X-ray microanalysis of diffusable elements. J Microsc 112:281–291PubMedCrossRefGoogle Scholar
  5. Bridge JHB, Bersohn MM, Gonzalez F, Bassingthwaighte JB (1982) Synthesis and use of cobaltic EDTA as an extracellular marker in rabbit heart. Am J Physiol 242:671–676Google Scholar
  6. Bulger RE, Beeuwkes R, Saubermann AJ (1981) Application of scanning electron microscopy to X-ray analysis of frozen-hydrated sections. III Elemental content of cells in the rat renal papillary tip. J Cell Biol 88:274–280PubMedCrossRefGoogle Scholar
  7. Cameron IL, Pool TB, Smith NKR (1979) An X-ray microanalysis survey of the concentration of elements in the cytoplasm of different mammalian cell types. J Cell Physiol 101:493–502PubMedCrossRefGoogle Scholar
  8. Cantino ME (1981) The use of X-ray microanalysis in studies of the acrosome reaction in sea urchin sperm. In: Hutchinson TE, Somlyo AP (eds) Microprobe analysis of biological systems. Academic, San Francisco, pp 65–82Google Scholar
  9. Cantino ME, Pollack GH (1984) Propane-jet freezing of muscle fibers for freeze fracture. In: Proc 42nd Annu Meet Electron Microsc Soc Am., San Francisco Press, San Francisco, pp 10–11Google Scholar
  10. Cantino ME, Schackmann RW, Johnson DE (1983) Changes in subcellular elemental distribution accompanying the acrosome reaction in sea urchin sperm. J Exp Zool 226:255–260PubMedCrossRefGoogle Scholar
  11. Chandler JA, Battersby S (1976) X-ray microanalysis of ultrathin frozen and freeze-dried sections of human sperm cells. J Microsc 107:55–65PubMedCrossRefGoogle Scholar
  12. Christensen AK (1971) Frozen thin sections of fresh tissue for electron microscopy, with a description of pancreas and liver. J Cell Biol 51:772–804PubMedCrossRefGoogle Scholar
  13. Dollhopf FK, Sitte H (1969) Die Shandon-Reichert-Kühleinrichtung FC-150 zum Herstellen von Ultradünn- und Feinschnitten bei extrem niederen Temperaturen. I. Gerätetechnik. Mikroskopie 25:17–32PubMedGoogle Scholar
  14. Edelmann L (1978) A simple freeze-drying technique for preparing biological tissue without chemical fixation for electron microscopy. J Microsc 112:243–248PubMedCrossRefGoogle Scholar
  15. Elder HY, Gray CC, Jardine AG, Chapman JN, Biddlecombe WH (1982) Optimum conditions for cryoquenching of small tissue blocks in liquid coolants. J Microsc 126:45–61PubMedCrossRefGoogle Scholar
  16. Frederik PM, Busing WM (1981) Strong evidence against section thawing whilst cutting on the cryo-ultratome. J Microsc 122:217–220PubMedCrossRefGoogle Scholar
  17. Geymayer W, Grasenick F, Hödl Y (1978) Stabilizing ultrathin cryo-sections by freeze-drying. J Microsc 112:39–46PubMedCrossRefGoogle Scholar
  18. Goddard MK (1983) Calcium localization in mammalian skeletal muscle. In: Gooley R (ed) Microbeam analysis. San Francisco Press, San Francisco, pp 259–260Google Scholar
  19. Goldstein JL, Newbury DE, Echlin P, Joy DC, Fiori C, Lifshin E (1981) Scanning electron microscopy and X-ray microanalysis. Plenum, New YorkCrossRefGoogle Scholar
  20. Gonzalez-Serratos H, Somlyo AV, McClellan G, Shuman H, Borrero LM, Somlyo AP (1978) Composition of vacuoles and sarcoplasmic reticulum in fatigued muscle: Electron probe analysis. Proc Natl Acad Sci 75:1329–1333PubMedCrossRefGoogle Scholar
  21. Hagler HK, Buja LM (1984) New techniques for the preparation of thin freeze dried cryosections for X-ray microanalysis. In: Revel JP, Barnard T, Haggis GH (eds) Science of biological specimen preparation. SEM, Chicago, pp 161–166Google Scholar
  22. Hagler H, Burton K, Buja L (1981) Electron probe X-ray microanalysis of normal and injured myocardium: Methods and results. In: Hutchinson TE, Somlyo AP (eds) Microprobe analysis of biological systems. Academic, New York, pp 127–156Google Scholar
  23. Hall TA (1971) The microprobe assay of chemical elements. In: Oster G (ed) Physical techniques in biological research 1A. Academic, New York, chapter 3, pp 158–276Google Scholar
  24. Hall T, Gupta G (1981) Some results of microprobe analysis in the study of epithelial transport. In: Hutchinson TE, Somlyo AP (eds) Microprobe analysis of biological systems. Academic, New York, pp 3–15Google Scholar
  25. Hall TA, Gupta BL (1982) Quantification for the X-ray microanalysis of cryosections. J Microsc 126:333–345PubMedCrossRefGoogle Scholar
  26. Handley DA, Alexander JT, Chien S (1981) The design and use of a simple device for rapid quench-freezing of biological samples. J Microsc 121:273–282PubMedCrossRefGoogle Scholar
  27. Hax WMA, Lichtenegger S (1982) Transfer, observation and analysis of frozen hydrated specimens. J Microsc 126:275–284PubMedCrossRefGoogle Scholar
  28. Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exo-cytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81:275–300PubMedCrossRefGoogle Scholar
  29. Hodson S, Marshall J (1970) Ultracryotomy: a technique for cutting ultrathin sections of unfixed frozen biological tissues for electron microscopy. J Microsc 91:105–117PubMedCrossRefGoogle Scholar
  30. Hren JJ (1979) Barriers to AEM: Contamination and etching. In: Hren JJ, Goldstein JL, Joy DC (eds) Introduction to analytical electron microscopy. Plenum, New York, pp 481–500Google Scholar
  31. Hutchinson TE, Johnson DE, MacKenzie AP (1978) Instrumentation for direct observation of frozen hydrated specimens in the electron microscope. Ul-tramicroscopy 3:315–324Google Scholar
  32. Ingram FD, Spurr AR, Ingram MJ (1977) Comparison of two different types of sodium standard for electron-probe analysis of soft tissue. Analyst 102:515PubMedCrossRefGoogle Scholar
  33. James-Kracke MR, Sloane BF, Shuman H, Somlyo AP (1979) Lysosomal composition in cultured vascular smooth muscle cells: Electron probe analysis. Proc Natl Acad Sci 76:6461–6465PubMedCrossRefGoogle Scholar
  34. Jehl B, Bauer R, Dörge A, Rick R (1981) The use of propane/isopentane mixtures for rapid freezing of biological specimens. J Microsc 123:307–309PubMedCrossRefGoogle Scholar
  35. Junker JL, Wasserman AJ, Berner PF, Somlyo AP (1984) Electron probe analysis of sodium and other elements in hypertrophied and sodium-loaded smooth muscle. Circ Res 54:254–266PubMedGoogle Scholar
  36. Karp RD, Silcox JC, Somlyo AV (1982) Cryoultramicrotomy: Evidence against melting and the use of a low temperature cement for specimen orientation. J Microsc 125:157–165PubMedCrossRefGoogle Scholar
  37. Kitazawa T, Shuman H, Somlyo AP (1982) Calcium and magnesium binding to thin and thick filaments in skinned muscle fibers: Electron probe analysis. J Muscle Res Cell Motil 3:437–454PubMedCrossRefGoogle Scholar
  38. Lechene CP, Bonner C, Kirk RG (1977) Electron probe microanalysis of chemical elemental content of single human red cells. J Cell Physiol 90:117–126PubMedCrossRefGoogle Scholar
  39. MacKenzie AP (1965) Factors affecting the mechanism of transformation of ice into water vapor in the freeze-drying process. Ann NY Acad Sci 125:522–547CrossRefGoogle Scholar
  40. Marshall AT (1980) Freeze-substitution as a preparative technique for biological X-ray microanalysis. Scanning Electron Microsc 11:395–408Google Scholar
  41. McDowall AW, Hofmann W, Lepault J, Adrian M, Dubochet J (1984) Cryo-electron microscopy of vitrified insect flight muscle. J Mol Biol 178:105–111PubMedCrossRefGoogle Scholar
  42. Meryman HT (1956) Mechanics of freezing in living cells and tissues. Science 124:515–521PubMedCrossRefGoogle Scholar
  43. Monroe RG, Gamble WJ, La Farge CG, Gamboa R, Morgan CL, Rosenthal A, Bullivant S (1968) Myocardial ultrastructure in systole and diastole using ballistic cryofixation. J Ultrastruct Res 22:22–36PubMedCrossRefGoogle Scholar
  44. Monson KL, Hutchinson TE (1981) X-ray microanalysis of freeze-dried muscle: Techniques and problems. In: Hutchinson TE, Somlyo AP (eds) Microprobe analysis of biological systems. Academic, New York, pp 157–176Google Scholar
  45. Morgan AJ (1979) Non-freezing techniques of preparing biological specimens for electron microprobe X-ray microanalysis. Scanning Electron Microsc 11:635–648Google Scholar
  46. Müller M, Meister N, Moor H (1980) Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie 36:129–140PubMedGoogle Scholar
  47. Ornberg R, Reese T (1981) Quick freezing and freeze substitution for X-ray microanalysis of calcium. In: Hutchinson TE, Somlyo AP (eds) Microprobe analysis of biological systems. Academic, New York, pp 213–228Google Scholar
  48. Philips TE, Boyne AF (1984) Liquid nitrogen-based quick freezing: Experiences with bounce-free delivery of cholinergic nerve terminals to a metal surface. J Electron Microsc Tech 1:9–29CrossRefGoogle Scholar
  49. Plattner H, Bachmann L (1982) Cryofixation: A tool in biological ultrastructural research. Int Rev Cytol 79:237–304PubMedCrossRefGoogle Scholar
  50. Rick R, Dorge A, Thurau K (1982) Quantitative analysis of electrolytes in frozen dried sections. J Microsc 125:239–247PubMedCrossRefGoogle Scholar
  51. Roomans GM, Seveus LA (1977) Preparation of thin cryosectioned standards for quantitative microprobe analysis. J Submicrosc Cytol 9:31–35Google Scholar
  52. Saubermann AJ (1980) Application of cryosectioning to X-ray microanalysis of biological tissue. Scanning Electron Microsc 11:421–430Google Scholar
  53. Saubermann AJ, Riley W, Echlin P (1977) Preparation of frozen hydrated tissue sections for X-ray microanalysis using a satellite vacuum coating and transfer system. Scanning Electron Microsc VI:347–356Google Scholar
  54. Schwabe KG, Terracio L (1980) Ultrastructural and thermocouple evaluation of rapid freezing techniques. Cryobiology 17:571–584PubMedCrossRefGoogle Scholar
  55. Seveus L (1978) Preparation of biological material for X-ray microanalysis of dif-fusable elements. J Microsc 112:269–279PubMedCrossRefGoogle Scholar
  56. Seveus L (1980) Cryoultramicrotomy as a preparative method for X-ray microanalysis. Scanning Electron Microsc IV: l6l–170Google Scholar
  57. Shuman H, Somlyo AV, Somlyo AP (1976) Quantitative electron probe microanalysis of biological thin sections: methods and validity. Ultramicros copy 1:317–339CrossRefGoogle Scholar
  58. Sjöström M, Thorneil LE (1975) Preparing sections of skeletal muscle for transmission electron analytical microscopy (TEAM) of diffusible elements. J Microsc 103:101–112PubMedCrossRefGoogle Scholar
  59. Somlyo AV, Shuman H, Somlyo AP (1977) Elemental distribution in striated muscle and the effects of hypertonicity. Electron probe analysis of cryosections. J Cell Biol 74:828–857PubMedCrossRefGoogle Scholar
  60. Somlyo AP, Somlyo AV, Shuman H (1979) Electron probe analysis of vascular smooth muscle composition of mitochondria, nuclei, and cytoplasm. J Cell Biol 81:316–335PubMedCrossRefGoogle Scholar
  61. Somlyo AV, Gonzalez-Serratos H, Shuman H, McClellan G, Somlyo AP (1981) Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: An electron-probe study. J Cell Biol 90:577–594PubMedCrossRefGoogle Scholar
  62. Somlyo AV, Bond M, Silcox JC, Somlyo AP (1985) Direct measurements of intracellular elemental composition utilizing a new approach to freezing in vivo. Proc Electron Microsc Soc Am 10–13Google Scholar
  63. Thornburg W, Mengers PE (1957) An analysis of frozen section techniques: I. Sectioning of fresh-frozen tissue. J Histochem Cytochem 5:47–57PubMedCrossRefGoogle Scholar
  64. Tormey JM (1981) Validating procedures for X-ray microanalysis of electrolytes. In: Hutchinson TE, Somlyo AP (eds) Microprobe analysis of biological systems. Academic, New York, pp 177–191Google Scholar
  65. Van Harreveld A, Crowell J (1964) Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat Rec 149:381–386CrossRefGoogle Scholar
  66. Wendt-Gallitelli MF, Jacob R (1982) Rhythm-dependent role of different calcium stores in cardiac muscle: X-ray microanalysis. J Mol Cell Cardiol 14:487–492PubMedCrossRefGoogle Scholar
  67. Wick SM, Hepler PK (1982) Selective localization of intracellular CA2+ with potassium antimonate. J Histochem Cytochem 30:1190–1204PubMedCrossRefGoogle Scholar
  68. Zaluzek NJ (1979) Quantitative X-ray microanalysis: Instrumental considerations and applications to materials science. In: Hren JJ, Goldstein JL, Joy DC (eds) Introduction to analytical electron microscopy. Plenum, New York, pp 481–500Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • D. E. Johnson
  • M. E. Cantino

There are no affiliations available

Personalised recommendations