Skip to main content

Heat Capacities of Biological Macromolecules

  • Chapter
  • First Online:
Thermodynamic Data for Biochemistry and Biotechnology

Abstract

Thermal measurements of biological objects are gaining increasing importance in molecular-biological studies (see, e.g., reviews [1–9]. This is due both to recent developments in the field of thermophysical instruments (including scanning differential microcalorimeters [10–18], and to advances in configurational statistics and statistical mechanics of macromolecules, the statistical-thermodynamic theory of phase transitions in biopolymers, and the theory of solutions of macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

c:

heat capacityheat capacityheat capacityheat capacity

c*(T):

variation of heat capacity with temperature determined by measuring finite temperature changes caused by [mite amounts of thermal energy at different temperatures. c*(T) is in the limit of LlT ....Oequal to c(n.

cp :

isobaric specific heat capacity [J g-1 K-1]

Cp,1 :

isobaric partial specific heat capacity of solvent

Cp,2 :

isobaric partial specific heat capacity of solute

cp,s :

heat capacity in solid state

δCp,s :

average difference between speciffic heat capacities ofvarious proteins in the solid state

cp :

average difference between the specific heat capacities of the unfolded and native state for a given protein

∆cp(ion):

heat capacity contribution resulting from ionization

\(\rm \frac{{ - (G^0- H^0 )}}{T} = \int\limits_0^T {\frac{{C^p }}{T}dt - \frac{1}{T}\int\limits_0^T {C_p dt} } \) :

Gibbs energy function

G0 :

standard Gibbs energy

H 00 :

standard enthalpy at 0K It is not specified here, whether G and Hg represent molar or specific quantities or refer to another amount ofmaterial (such as 100 g). These definitions are made in the tables. A conversion factor of 1 cal=4.186 J has been used throughout this chapter.

References

  1. Sturtevant JM (1972) In: Hirs CHW, Timasheff SN (eds) Methods in enzymology, vol 26. Academic Press, New York, p 227

    Google Scholar 

  2. Sturtevant JM (1974) Annu Rev Biophys Bioeng 3: 35

    CAS  PubMed  Google Scholar 

  3. Andronikashvili EL (1972) Biofizika 17: 1068–1178

    CAS  PubMed  Google Scholar 

  4. McKnight RP, Karasz FE (1973) Thermochim Acta 5: 339

    Google Scholar 

  5. Privalov PL (1974) FEBS Lett 40: 140–153

    Google Scholar 

  6. Rialdi G, Biltonen RL (1972) In: Skinner HA (ed) MTP Int Rev Sci Phys Chem. Butterworths, London, p 103

    Google Scholar 

  7. Spink C, Wadsö I (1976) In: Glick D (ed) Methods of biochemical analysis, vol 23. Willey Interscience, New York, p 83

    Google Scholar 

  8. Privalov PL (1980) Pure Appl Chem 52: 479–497

    CAS  Google Scholar 

  9. Hinz H-J (1979) In: Jones MN (ed) Biochemical thermodynamics. Elsevier, Amsterdam, p 116–167

    Google Scholar 

  10. Privalov PL (1979) Adv Protein Chem 33: 167–241

    CAS  PubMed  Google Scholar 

  11. Privalov PL (1982) Adv Protein Chem 35: 1–104

    CAS  PubMed  Google Scholar 

  12. Privalov PL, Monaselidze JR, Mrevlishvili GM, Magaldadze VA (1964) Zh Exsp Teor Fiz (USSR) 47: 2073–2079

    CAS  Google Scholar 

  13. Gill SJ, Beck K (1965) Rev Sci lnstrum 36: 274–276

    CAS  Google Scholar 

  14. Danford R, Krakauer H, Sturtevant JM (1967) Rev Sci lnstrurn 38: 484–487

    Google Scholar 

  15. Watson ES, O’Neil MJ, Justin J, Brenner N (1964) Anal Chem 36: 1233–1238

    CAS  Google Scholar 

  16. Privalov PL, Monaselidze JR (1965) Pribory i Tekhnika Eksperirnenta (USSR) 6: 174–178

    Google Scholar 

  17. Privalov PL, Plotnikov VV, Filirnonov VV (1975) J Chem Thermodynarn 7: 41–47

    CAS  Google Scholar 

  18. Bakradze NG, Monaselidze JR (1971) Izrneritelnaya Tekhnika 2: 58–61

    Google Scholar 

  19. Monaselidze JR, Bakradze NG (1973) In: Andronikashvi Li E (ed) Conformational changes of biopolyrners in solutions. Nauka, Moscow, p 300

    Google Scholar 

  20. Grnelin E (1979) Thermochim Acta 29: 1–39

    Google Scholar 

  21. Hutchens JO, Cole AG, Robie RA, Stout J (1963) J Biol Chem 238: 2407–2412

    CAS  PubMed  Google Scholar 

  22. Hutchens JO, Cole AG, Stout J (1963) J Phys Chem 67: 1128–1130

    CAS  Google Scholar 

  23. Cole AG, Hutchens JO, Stout J (1963) J Phys Chem 67: 1852–1855

    CAS  Google Scholar 

  24. Cole AG, Hutchens JO, Stout JW (1963) J Phys Chem 67: 2245–2247

    CAS  Google Scholar 

  25. Hutchens JO, Cole AG, Stout JW (1964) J Biol Chem 239: 591–96

    CAS  PubMed  Google Scholar 

  26. Hutchens JO, Cole AG, Stout JW (1964) J Biol Chem 239: 4194–4196

    CAS  PubMed  Google Scholar 

  27. Hutchens JO, Cole AG, Stout JW (1969) J Biol Chem 244: 26–32

    CAS  PubMed  Google Scholar 

  28. Finegold L, Cude JL (1972) Nature 237: 334–336

    CAS  PubMed  Google Scholar 

  29. Finegold L, Cude JL (1972) Nature 238: 38–40

    CAS  PubMed  Google Scholar 

  30. Finegold L, Cude JL (1972) Biopolyrners 11: 683

    CAS  Google Scholar 

  31. Finegold L, Cude JL (1972) Biopolymers 11: 2483–2491

    CAS  PubMed  Google Scholar 

  32. Fanconi B, Finegold L (1975) Science 100: 458–459

    Google Scholar 

  33. Mizutani U, Massalski TB, McGinness JE, Corry PM (1976) Nature 259: 505–507

    CAS  PubMed  Google Scholar 

  34. Delhaes P, Daurel M, Dupart E (1972) CR Acad Sci Paris Ser B 274: 308–312

    CAS  Google Scholar 

  35. Daurel M, Delhaes P, Dupart E (1975) Biopolyrners 14: 801–823

    CAS  Google Scholar 

  36. Konisek J, Suurkuusk J, Wadso I (1971) Chem Scr 1: 217–273

    Google Scholar 

  37. Suurkuusk J (1974) Acta Chem Scand B 28: 409–417

    CAS  PubMed  Google Scholar 

  38. Bull HB, Breese K (1968) Arch BioChem Biophys 128: 497–503

    CAS  PubMed  Google Scholar 

  39. Andronikashvili EL, Mrevlishvili GM, Japaridze GS, Sokhadze VM (1973) In: Proc 6th AllUnion Conf Calorimetry. Metsniereba, Tbilisi, pp 490–495

    Google Scholar 

  40. Andronikashvili EL, Mrevlishvili GM, Japaridze GS, Sokhadze VM (1974) Dokl Akad Nauk SSSR 215: 457–461

    Google Scholar 

  41. Andronikashvili EL, Mrevlishvili GM, Japaridze GS, Sokhadze VM, Kvavadze KA (1976) Biopolyrners 15: 1991–2001

    CAS  Google Scholar 

  42. Andronikashvili EL, Mrevlishvili GM (1976) In: 31st Annu Calorimetry Conf: Abstracts, Argonne Nat Lab USA, p 48

    Google Scholar 

  43. Mrevlishvili GM (1977) Biofizika (USSR) 22: 180–191

    CAS  Google Scholar 

  44. Andronikashvili EL, Mrevlishvili GM, Japaridze GS, Sokhadze VM (1979) Int J Quantum Chem 16: 367–377

    CAS  Google Scholar 

  45. Andronikashvili EL, Mrevlishvili GM, Japaridze GS, Sokhadze VM, Tatishvili DA (1981) J Polyrn Sci Part 0 Makrornol Rev 69: 11–15

    CAS  Google Scholar 

  46. Mrevlishvili GM (1977) Biofizika (USSR) 26: 233–241

    Google Scholar 

  47. Mrevlishvili GM (1979) Sov Phys Usp 22(6): 433–455

    Google Scholar 

  48. Mrevlishvili GM (1980) In: 6th Int ConfThermodynarn. Main Lectures, Merseburg, GDR, p 39

    Google Scholar 

  49. Mrevlishvili GM, Andronikashvili EL, Japaridze GS, Sokhadze VM, Tatishvili DA (1982) Biofizika 27: 987–993

    CAS  PubMed  Google Scholar 

  50. Mrevlishvili GM, Andronikashvili EL, Japaridze GS, Sokhadze VM, Tatishvili DA (1982) Dokl Akad Nauk SSSR 264: 729–732

    Google Scholar 

  51. Verkin BJ, Sukharevskii BY, Telezhenko YV, Alapina AV, Vorob’eva NN (1977) Sov J Low Temp Phys 3: 121–125

    Google Scholar 

  52. Carreri G, Gratton E, Yang PH, Rupley JA (1980) Nature 284: 572–573

    Google Scholar 

  53. Haly AK., Snaith JW (1968) Biopolymers 14: 801–812

    Google Scholar 

  54. Franklin RF, Gossling RG (1953) Acta Cryst 6: 673–680

    CAS  Google Scholar 

  55. Dickerson RE, Drew HR, Conner BN, Wing RM, Fratini A V, Kopka ML (1982) Science 216: 475–485

    CAS  PubMed  Google Scholar 

  56. Mrevlishvili GM, Japaridze GS, Sokhadze VM, Bilinska B (1978) Bioflzika 4: 605–610

    Google Scholar 

  57. Mrevlishvili GM, Japaridze GS, Sokhadze VM, Tatishvili DA, Orvelashvili LV (1981) Mol Biol (Mosc) 15: 336–343

    CAS  Google Scholar 

  58. Mrevlishvili GM (1981) Dokl Acad Nauk SSSR 260: 761–764

    CAS  Google Scholar 

  59. Mrevlishvili GM, Syrnikov YP (1974) Stud Biophys 3: 155–170

    Google Scholar 

  60. Privalov PL, Mrevlishvili GM (1967) Bioflzika 12: 22–29

    CAS  Google Scholar 

  61. Sturtevant JM (1977) Proc Natl Acad Sci USA 74: 2236–2240

    CAS  PubMed  Google Scholar 

  62. Telezhenko YV, Sukharevskii BY (1982) Low Temp Phys (USSR) 8: 188–198

    CAS  Google Scholar 

  63. Hutchens JO (1968) In: The handbook of biochemistry with selected data for biophysicists. Chemical Rubber Company, Cleveland, Ohio, and personal communication TG MrevlishviIi

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mrevlishvili, G.M. (1986). Heat Capacities of Biological Macromolecules. In: Hinz, HJ. (eds) Thermodynamic Data for Biochemistry and Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71114-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71114-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71116-9

  • Online ISBN: 978-3-642-71114-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics