Present and Future Uses and a Bit of History

  • John T. Edsall


Workers in biochemistry and biophysics frequently have need for thermodynamic data relating to molecules, both small and large, and to the equilibrium properties of systems involving such molecules. Knowledge of the partial specific or molar volumes, heat capacities, and compressibilities of molecules of biological interest is frequently important, both in the planning of experiments and in understanding molecular interactions. The characterization of reversible conformational transitions, in nucleic acids, proteins, and other molecules, is a central problem today, whether those transitions are associated with ligand binding, with temperature or pressure changes, or with various other conditions. Thermodynamics is often relevant to kentic studies, as in many, perhaps most, enzyme-catalyzed reactions, for which certain intermediate steps in the total process may be essentially at equilibrium at any moment. The special thermodynamic properties of water and aqueous solutions, as they relate to ions, and to polar and nonpolar molecules, are naturally of supreme importance in biology.


Conformational Transition Gibbs Energy Change Bohr Effect Supreme Importance Partial Molar Compressibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guerlac H (1975) Antoine-Laurent Lavoisier: chemist and revolutionary. Scribners, New York, pp 171Google Scholar
  2. 1a.
    Holmes FL (1985) Lavoisier and the chemistry of life: an exploration of scientific creativity. University of Wisconsin Press, Madison pp. xxiv + 565Google Scholar
  3. 2.
    Gibbs JW (1931) The collected works of J Willard Gibbs, vol 1. Longmans Green, New York, pp 55–353Google Scholar
  4. 3.
    Van’t Hoff JH (1887) Z Phys Chem 1: 481–508 [English translation in Alembic Club Reprints No 19 (1929) The foundations of the theory of dilute solutions. Alembic Club, Edinburgh, pp 5–42]Google Scholar
  5. 4.
    Lewis GN, Randall M (1923) Thermodynamics and the free energy of chemical substances. McGraw-Hill, New York, xxiii+653 pp (Rev edn by Pitzer KS, Brewer L 1961)Google Scholar
  6. 5.
    Henderson LJ (1908) Am J Physiol 21: 173–179Google Scholar
  7. 6.
    Sørensen SPL (1912) Ergeb Physiol Biol Chem Exp Pharmakol 12: 393–532Google Scholar
  8. 7.
    Sørensen SPL et al. (1917) Comp Rend Trav Lab Carlsberg 12: 68–372Google Scholar
  9. 8.
    Clark WM (1960) Oxidation-reduction potentials of organic systems. Williams and Wilkins, Baltimore, xi + 584 ppGoogle Scholar
  10. 9.
    Conant JB (1923) J Biol Chem 57: 401–414Google Scholar
  11. 10.
    Conant JB, Fieser LF (1925) J Biol Chem 62: 595–622Google Scholar
  12. 11.
    Lehmann J (1930) Scand Arch Physiol 58: 173–312Google Scholar
  13. 12.
    Borsook H, Schott HF (1931) J Biol Chem 92: 535–557Google Scholar
  14. 13.
    Michaelis L, Schubert MP (1938) Chem Rev 22: 437–470CrossRefGoogle Scholar
  15. 14.
    Walz D (1979) Biochim Biophys Acta 505: 279–353Google Scholar
  16. 15.
    Muralt AV (1952) Otto Meyerhof (1884–1951) Ergeb Physiol Biol Chem Exp Pharmakol 47:i–xxGoogle Scholar
  17. 16.
    Nachmansohn D, Ochoa S, Lipmann FA (1960) Otto Meyerhof (1884–1951) Biog Mem Natl Acad Sci 34: 153–182Google Scholar
  18. 17.
    Lipmann FA (1941) Adv Enzymol Relat Areas Mol Biol 1: 99–162Google Scholar
  19. 18.
    Kalckar HM (1941) Chem Rev 28: 71–178CrossRefGoogle Scholar
  20. 19.
    Krebs HA, Kornberg HL (1957) Ergeb Physiol Biol Chem Exp Pharmakol 49: 212–298 (Appendix by K Burton is on pp 275–285)Google Scholar
  21. 20.
    Mitchell P (1981) In: Semenza G (ed) Of oxygen, fuels, and living matter, part 1, with reprints of five of Mitchell’s papers on pp 57–160. Wiley, Chichester, pp 1–56Google Scholar
  22. 21.
    Cohn EJ, Edsall JT (1943) Proteins, amino acids and peptides as ions and dipolar ions. Reinhold, New York, xviii + 686 ppGoogle Scholar
  23. 22.
    Frank HS, Evans MW (1945) J Chem Phys 13: 507–532CrossRefGoogle Scholar
  24. 23.
    Kauzmann W (1959) Adv Protein Chem 14: 1–63CrossRefGoogle Scholar
  25. 24.
    Edsall JT, McKenzie HA (1978) Adv Biophys 10: 137–208; (1983) 16: 53–183Google Scholar
  26. 25.
    Linderstrøm-Lang K (1924) Comp Rend Trav Lab Carlsberg 15(7): 1–29Google Scholar
  27. 26.
    Adair GS (1925) Proc R Soc Lond A 109: 292–300; J Biol Chem 63: 529–545Google Scholar
  28. 27.
    Scatchard G (1949) Ann NY Acad Sci 51: 660–672CrossRefGoogle Scholar
  29. 28.
    Wyman J (1964) Adv Protein Chem 19: 223–286CrossRefGoogle Scholar
  30. 29.
    Edsall JT, Gutfreund H (1983) Biothermodynamics: the study of biochemical processes at equilibrium. Wiley, Chichester, xiii + 248 pp (see in particular pp 177–209)Google Scholar
  31. 30.
    Wyman J (1967) J Am Chem Soc 89: 2202–2218CrossRefGoogle Scholar
  32. 31.
    Wyman J (1981) Biophys Chem 14: 135–146CrossRefGoogle Scholar
  33. 32.
    Wyman J (1975) Proc Natl Acad Sci USA 72: 1464–1468CrossRefGoogle Scholar
  34. 33.
    Edsall JT (1985) In: Semenza G (ed) Comprehensive biochemistry, vol 36. Selected topics in the history of biochemistry, personal recollections II. Elsevier, Amsterdam 99–195Google Scholar
  35. 34.
    Ackers GK (1980) Biophys J 32: 331–346CrossRefGoogle Scholar
  36. 35.
    Pettigrew DW, Romeo PH, Tsapis A, Thillet J, Smith ML, Turner BW, Ackers GK (1982) Proc Natl Acad Sci USA 79: 1849–1853CrossRefGoogle Scholar
  37. 36.
    Perutz MF (1976) British Med Bull 32: 195–208Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • John T. Edsall

There are no affiliations available

Personalised recommendations