Skip to main content

Present and Future Uses and a Bit of History

  • Chapter
  • First Online:
  • 351 Accesses

Abstract

Workers in biochemistry and biophysics frequently have need for thermodynamic data relating to molecules, both small and large, and to the equilibrium properties of systems involving such molecules. Knowledge of the partial specific or molar volumes, heat capacities, and compressibilities of molecules of biological interest is frequently important, both in the planning of experiments and in understanding molecular interactions. The characterization of reversible conformational transitions, in nucleic acids, proteins, and other molecules, is a central problem today, whether those transitions are associated with ligand binding, with temperature or pressure changes, or with various other conditions. Thermodynamics is often relevant to kentic studies, as in many, perhaps most, enzyme-catalyzed reactions, for which certain intermediate steps in the total process may be essentially at equilibrium at any moment. The special thermodynamic properties of water and aqueous solutions, as they relate to ions, and to polar and nonpolar molecules, are naturally of supreme importance in biology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guerlac H (1975) Antoine-Laurent Lavoisier: chemist and revolutionary. Scribners, New York, pp 171

    Google Scholar 

  2. Holmes FL (1985) Lavoisier and the chemistry of life: an exploration of scientific creativity. University of Wisconsin Press, Madison pp. xxiv + 565

    Google Scholar 

  3. Gibbs JW (1931) The collected works of J Willard Gibbs, vol 1. Longmans Green, New York, pp 55–353

    Google Scholar 

  4. Van’t Hoff JH (1887) Z Phys Chem 1: 481–508 [English translation in Alembic Club Reprints No 19 (1929) The foundations of the theory of dilute solutions. Alembic Club, Edinburgh, pp 5–42]

    Google Scholar 

  5. Lewis GN, Randall M (1923) Thermodynamics and the free energy of chemical substances. McGraw-Hill, New York, xxiii+653 pp (Rev edn by Pitzer KS, Brewer L 1961)

    Google Scholar 

  6. Henderson LJ (1908) Am J Physiol 21: 173–179

    Article  CAS  Google Scholar 

  7. Sørensen SPL (1912) Ergeb Physiol Biol Chem Exp Pharmakol 12: 393–532

    Article  Google Scholar 

  8. Sørensen SPL et al. (1917) Comp Rend Trav Lab Carlsberg 12: 68–372

    Google Scholar 

  9. Clark WM (1960) Oxidation-reduction potentials of organic systems. Williams and Wilkins, Baltimore, xi + 584 pp

    Google Scholar 

  10. Conant JB (1923) J Biol Chem 57: 401–414

    Article  CAS  Google Scholar 

  11. Conant JB, Fieser LF (1925) J Biol Chem 62: 595–622

    Article  CAS  Google Scholar 

  12. Lehmann J (1930) Scand Arch Physiol 58: 173–312

    Article  CAS  Google Scholar 

  13. Borsook H, Schott HF (1931) J Biol Chem 92: 535–557

    Article  CAS  Google Scholar 

  14. Michaelis L, Schubert MP (1938) Chem Rev 22: 437–470

    Article  CAS  Google Scholar 

  15. Walz D (1979) Biochim Biophys Acta 505: 279–353

    Article  CAS  Google Scholar 

  16. Muralt AV (1952) Otto Meyerhof (1884–1951) Ergeb Physiol Biol Chem Exp Pharmakol 47:i–xx

    Article  Google Scholar 

  17. Nachmansohn D, Ochoa S, Lipmann FA (1960) Otto Meyerhof (1884–1951) Biog Mem Natl Acad Sci 34: 153–182

    Google Scholar 

  18. Lipmann FA (1941) Adv Enzymol Relat Areas Mol Biol 1: 99–162

    CAS  Google Scholar 

  19. Kalckar HM (1941) Chem Rev 28: 71–178

    Article  CAS  Google Scholar 

  20. Krebs HA, Kornberg HL (1957) Ergeb Physiol Biol Chem Exp Pharmakol 49: 212–298 (Appendix by K Burton is on pp 275–285)

    Article  CAS  Google Scholar 

  21. Mitchell P (1981) In: Semenza G (ed) Of oxygen, fuels, and living matter, part 1, with reprints of five of Mitchell’s papers on pp 57–160. Wiley, Chichester, pp 1–56

    Google Scholar 

  22. Cohn EJ, Edsall JT (1943) Proteins, amino acids and peptides as ions and dipolar ions. Reinhold, New York, xviii + 686 pp

    Google Scholar 

  23. Frank HS, Evans MW (1945) J Chem Phys 13: 507–532

    Article  CAS  Google Scholar 

  24. Kauzmann W (1959) Adv Protein Chem 14: 1–63

    Article  CAS  Google Scholar 

  25. Edsall JT, McKenzie HA (1978) Adv Biophys 10: 137–208; (1983) 16: 53–183

    Google Scholar 

  26. Linderstrøm-Lang K (1924) Comp Rend Trav Lab Carlsberg 15(7): 1–29

    Google Scholar 

  27. Adair GS (1925) Proc R Soc Lond A 109: 292–300; J Biol Chem 63: 529–545

    CAS  Google Scholar 

  28. Scatchard G (1949) Ann NY Acad Sci 51: 660–672

    Article  CAS  Google Scholar 

  29. Wyman J (1964) Adv Protein Chem 19: 223–286

    Article  CAS  Google Scholar 

  30. Edsall JT, Gutfreund H (1983) Biothermodynamics: the study of biochemical processes at equilibrium. Wiley, Chichester, xiii + 248 pp (see in particular pp 177–209)

    Google Scholar 

  31. Wyman J (1967) J Am Chem Soc 89: 2202–2218

    Article  CAS  Google Scholar 

  32. Wyman J (1981) Biophys Chem 14: 135–146

    Article  CAS  Google Scholar 

  33. Wyman J (1975) Proc Natl Acad Sci USA 72: 1464–1468

    Article  CAS  Google Scholar 

  34. Edsall JT (1985) In: Semenza G (ed) Comprehensive biochemistry, vol 36. Selected topics in the history of biochemistry, personal recollections II. Elsevier, Amsterdam 99–195

    Google Scholar 

  35. Ackers GK (1980) Biophys J 32: 331–346

    Article  CAS  Google Scholar 

  36. Pettigrew DW, Romeo PH, Tsapis A, Thillet J, Smith ML, Turner BW, Ackers GK (1982) Proc Natl Acad Sci USA 79: 1849–1853

    Article  CAS  Google Scholar 

  37. Perutz MF (1976) British Med Bull 32: 195–208

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Edsall, J.T. (1986). Present and Future Uses and a Bit of History. In: Hinz, HJ. (eds) Thermodynamic Data for Biochemistry and Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71114-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71114-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71116-9

  • Online ISBN: 978-3-642-71114-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics