Skip to main content

Mechanisms of Differential Nerve Block

  • Chapter
Book cover Local Anesthetics

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 81))

Abstract

Local anesthesia has been in active clinical use for 100 years. During the past 50 years surprisingly little change has occurred in drugs or techniques. Recently there has been a rapid increase in the demands placed on the anesthesiologist: The parturient needs pain relief but does not wish to prolong her labor by decrease in motor function. The patient with chronic pain needs relief but a clear sensor-ium so he may continue as an active member of society. Patients suffering from various neurological disorders with uncontrollable muscle spasms need relief without loss of sensation. These demands can be satisfied only partially with available methods of local anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian ED (1921) The recovery process of excitable tissues. Part II. J Physiol (Lond) 55:193–225

    CAS  Google Scholar 

  • Adrian ED (1932) The mechanism of nervous action. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  • Ahlgren EW, Stephen CR, Lloyd EAC, McCollum DE (1966) Diagnosis of pain with a graduated spinal block technique. JAMA 195:125–128

    Google Scholar 

  • Amagasa S, Ando K, Sakai M, Kato Y, Ichiyanagi K (1984) Phenol exerts greater effects on larger nerve fibers. Pain (Suppl. 2):S 10

    Google Scholar 

  • Arbuthnott R, Boyd I A, Kalu KU (1980) Ultrastructural dimensions of myelinated peripheral nerve fibers in the cat and their relation to conduction velocity. J Physiol (Lond) 308:125–157

    CAS  Google Scholar 

  • Arrowood JG (1950) Differential spinal block with particular reference to hypertensive patients. Proc R Soc Med 43:919–928

    PubMed  CAS  Google Scholar 

  • Arrowood JG, Sarnoff SJ (1948) Differential spinal block: use in the investigation of pain following amputation. Anesthesiology 9:614–622

    PubMed  CAS  Google Scholar 

  • Bakland LK (1973) Electroanalgesia by transalveolar and transdental stimulation. Thesis, Harvard School of Dental Medicine, Boston, MA

    Google Scholar 

  • Bennett AL, Wagner JC, McIntyre AK (1942) The determination of local anesthetic potency by observation of the nerve action potential. J Pharmacol Exp Ther 75:125–136

    CAS  Google Scholar 

  • Berthold CH (1978) Morphology of normal peripheral axons. In: Waxman SG (ed) Physiology and pathobiology of axons. Raven, New York, pp 3–63

    Google Scholar 

  • Bischoff A (1979) Congenital insensitivity to pain with anhidrosis: a morphometric study of sural nerve and cutaneous receptors in the human prepuce. In: Bonica JJ (ed) Advances in pain research and therapy, vol 3. Raven, New York, pp 53–65

    Google Scholar 

  • Bishop GH, O’Leary J (1939) B and C nerve fibers. Am J Physiol 126:434

    Google Scholar 

  • Bishop GH, Heinbecker P, O’Leary J (1933) The function of the non-myelinated fibers of the dorsal roots. Am J Physiol 106:647–669

    Google Scholar 

  • Boyd IA, Kalu KU (1979) Scaling factor relating conduction velocity and diameter for myelinated afferent nerve fibres in cat hind limb. J Physiol (Lond) 289:277–297

    CAS  Google Scholar 

  • Bromage PR (1978) Epidural analgesia. Saunders, Philadelphia, PA

    Google Scholar 

  • Brown DT, Morison DH, Covino BG, Scott DB (1980) Comparison of carbonated bupiva-caine and bupivacaine hydrochloride for extradural anaesthesia. Br J Anaesth 52:419–422

    PubMed  CAS  Google Scholar 

  • Burgess PR, Yu WJ, Clark FJ, Simon J (1982) Signaling of kinesthetic information by peripheral sensory receptors. Annu Rev Neurosci 5:171–187

    PubMed  CAS  Google Scholar 

  • Burke D, Mackenzie RA, Skuse NF, Lethlean AK (1975) Cutaneous afferent activity in median and radial nerve fascicles: a microelectrode study. J Neurol Neurosurg Psy-chiatr 38:855–864

    CAS  Google Scholar 

  • Caldwell PC (1958) Studies on the internal pH of large muscle and nerve fibres. J Physiol (Lond) 142:22–49

    CAS  Google Scholar 

  • Carley LR (1984) Characterizing and comparing the aftereffects of activity at successive nodes of Ranvier from frog sciatic nerve fibers. Ph D Thesis, Dept Electrical Engineering and Computer Science, MIT, Cambridge, Mass

    Google Scholar 

  • Carley LR, Raymond SA (1983) Comparison of the aftereffects of activity between nodes of Ranvier. Soc Neurosci (Abstr) 9:1049. 24

    Google Scholar 

  • Cassell EJ (1982) The nature of suffering and the goals of medicine. NEngl J Med 306: 639–645

    Google Scholar 

  • Catchlove RFH (1972) The influence of CO2 and pH on local anesthetic action. J Pharmacol Exp Ther 181:298–309

    PubMed  CAS  Google Scholar 

  • Catchlove RFH (1973) Potentiation of two different local anaesthetics by carbon dioxide. Br J Anaesth. 45:471–475

    PubMed  CAS  Google Scholar 

  • Chapman CR (1980) Pain and perception: comparison of sensory decision theory and evoked potential methods. Res Pub Assoc Res Nern Ment Dis 58:111–142

    CAS  Google Scholar 

  • Chiu SY, Ritchie JM (1984) On the physiological role of internodal potassium channels and the security of conduction in myelinated nerve fibers. Proc R Soc Lond (Biol) 220:415–422

    CAS  Google Scholar 

  • Chiu SY, Richie JM, Rogart RB, Stagg D (1979) A quantitative description of membrane currents in rabbit myelinated nerve. J Physiol (Lond) 292:149–166

    CAS  Google Scholar 

  • Clark D, Hughes J, Gasser HS (1935) Afferent function in the group of nerve fibers of slowest conduction velocity. Am J Physiol 114:69–76

    Google Scholar 

  • Clifton GL, Coggleshell RE, Vance WH, Willis WD (1976) Receptive fields of unmyelinated ventral root afferent fibres in the cat. J Physiol (Lond) 256:573–600

    CAS  Google Scholar 

  • Coggleshell RE, Applebaum ML, Fazen ML, Stubbs TB, Sykes MT (1975) Unmyelinated axons in human ventral roots: a possible explanation for the failure of dorsal rhizotomy to relieve pain. Brain 98:157–166

    Google Scholar 

  • Cohen LB, DeWeer P (1977) Structural and metabolic processes directly related to action potential propagation. Handbook of Physiology Chap 5, American Physiological Society, Washington, pp 137–159

    Google Scholar 

  • Cole F (1952) Tourniquet pain. Anaesth. Analg 31:63–64

    CAS  Google Scholar 

  • Colquhoun DJ, Ritchie JM (1972) The interaction at equilibrium between TTX and mammalian non-myelinated nerve fibers. J Physiol (Lond) 221:533–553

    CAS  Google Scholar 

  • Collins WF Jr, Nulsen FE, Randt CT (1960) Relation of peripheral nerve fiber size and sensation in man. Arch Neurol 3:381–385

    PubMed  Google Scholar 

  • Condouris G A (1961) A study on the mechanism of action of cocaine on amphibian peripheral nerve. J Pharmacol Exp Ther 131:243–249

    PubMed  CAS  Google Scholar 

  • Condouris GA, Goebel RH, Brady T (1976) Computer simulation of local anesthetic effects using a mathematical model of myelinated nerve. J Pharmacol Exp Ther 196: 737–745

    PubMed  CAS  Google Scholar 

  • Connelly CM (1959) Recovery processes and metabolism of nerve. Rev Mod Phys 31: 474–484

    Google Scholar 

  • Coraboeuf E, Niedergerke R (1953) Kohlensäure- und pH-Wirkung an der markhaltigen Einzelfaser des Froschs. Pflügers Archiv 258:103–107

    PubMed  CAS  Google Scholar 

  • Courtney KR (1975) Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA968. J Pharmacol Exp Ther 195:225–236

    PubMed  CAS  Google Scholar 

  • Courtney KR, Kendig JJ, Cohen EN (1978) Frequency-dependent conduction block: the role of nerve impulse pattern in local anesthetic potency. Anesthesiology 48:111–117

    PubMed  CAS  Google Scholar 

  • Crescitelli F (1948) Carbamate conduction block in frog nerve fibers. Am J Physiol 155: 82–91

    PubMed  CAS  Google Scholar 

  • Crescitelli F (1950) A temperature differentiation on the dual action of amyl carbamate on frog nerve. J Cell Comp Physiol 35:261–272

    CAS  Google Scholar 

  • Crescitelli F (1952 a) Some features in responses of different nerve fiber types to a deficiency of sodium. Am J Physiol 169:1–10

    PubMed  CAS  Google Scholar 

  • Crescitelli F (1952 b) Modification in responses to sodium of nerve fibers treated with drugs. Am J Physiol 169:638–648

    PubMed  CAS  Google Scholar 

  • Darian-Smith I, Johnson OK, Dykes R (1973) “Cold” fiber population innervating palmar and digital skin of monkey: responses to cooling pulses. J Neurophysiol 36:325–346

    PubMed  CAS  Google Scholar 

  • Dawson GD (1971) Brain mechanisms. In: Remond A (ed) Handbook of EEG and clinical neurophysiology Vol 9, Elsevier, Amsterdam, pp 44–56

    Google Scholar 

  • Denny-Brown D, Brenner C (1944) Lesion in peripheral nerve resulting from compression by spring clip. Arch Neurol Psychiatr 52:1–19

    Google Scholar 

  • Dhopesh VP, Bums RA (1976) Loss of nerve conduction in heat stroke. NEng J Med 294:557–558

    CAS  Google Scholar 

  • Didisheim JC, Postemak JM (1959) Anesthésie différentiale du nerf sciatique de la grenouille. Helv Physiol Acta 17:242–253

    CAS  Google Scholar 

  • Dixon WE (1905) The selective action of cocaine on nerve fibres. J Physiol (Lond) 32: 87–94

    Google Scholar 

  • Dodd J, Jahr CE, Jessel TM (1984) Neurotransmitters and neuronal markers at sensory synapses in dorsal horn. In Kruger L, Liebeskind JC (eds) Advances in pain research and therapy, vol 6. Raven, New York, pp 105–121

    Google Scholar 

  • Dodt HU, Strichartz GR, Zimmermann M (1983) Phenol solutions differentially block conduction in cutaneous nerve fibers of the cat. Neurosci Lett 42:323–327

    PubMed  CAS  Google Scholar 

  • Douglas WW, Malcolm JL (1955) The effect of localized cooling on conduction in cat nerves. J Physiol (Lond) 130:53–71

    CAS  Google Scholar 

  • Douglas WW, Ritchie JM (1957) Non-medullated fibers in the saphenous nerve which signal touch. J Physiol (Lond) 139:385–399

    CAS  Google Scholar 

  • Douglas WW, Ritchie JM (1962) Mammalian non-myelinated nerve fibers. Physiol Rev 42:297–334

    PubMed  CAS  Google Scholar 

  • Douglas WW, Ritchie JM, Straub RW (1960) The role of non-myelinated fibers in signalling cooling of the skin. J Physiol (Lond) 150:266–283

    CAS  Google Scholar 

  • Dun FT (1955) The delay and blockage of sensory impulses in the dorsal root ganglion. J Physiol (Lond) 127:252–264

    CAS  Google Scholar 

  • Dyck PJ, Lambert EH, Nichols PC (1972) Quantitative measurements of sensation related to compound action potential and number and sizes of myelinated and unmyelinated fibers of sural nerve in health, Friedrich’s ataxia, hereditary sensory neuropathy and tabes dorsalis. In: Cobb WA (ed). Handbook of EEG and clinical neurophysiology, Vol 9, Somatic sensation. Elsevier, Amsterdam pp 83–118

    Google Scholar 

  • Erlanger J, Blair EA (1940) Facilitation and difficilitation effected by nerve impulses in peripheral fibers. J Neurophysiol 3:107–127

    Google Scholar 

  • Erlanger J, Gasser HS (1937) Electrical signs of nervous activity. University of Pennsylvania Press, Philadelphia, pp 1–221

    Google Scholar 

  • Erlanger J, Blair EA, Schoepfle GM (1941) A study of the spontaneous oscillations in the excitability of nerve fibers, with special reference to the action of strychnine. Am J Physiol 134:705–718

    Google Scholar 

  • Everett GM, Goodsell JS (1952) The greater resistance to procaine of slow fiber groups in some peripheral nerves. J Pharmacol Exp Ther 106:385

    Google Scholar 

  • Everett GM, Toman JEP (1954) Procaine block of fiber groups in various nerves. Fed Proc 13:352–353

    Google Scholar 

  • Fields HL (1984) Brainstem mechanisms of pain modulation. In: Kruger L, Liebeskind JC (eds) Advances in pain research and therapy, vol 6. Raven, New York, pp 242–252

    Google Scholar 

  • Fields HL, Basbaum AI (1978) Brainstem control of spinal pain-transmission neurons. Annu Rev Physiol 40:217–248

    PubMed  CAS  Google Scholar 

  • Fields HL, Basbaum AI (1979) Anatomy and physiology of a descending pain control system. In: Bonica JJ (ed) Advances in pain. Research and therapy, vol 3, pp 427–440

    Google Scholar 

  • Fields HL, Vanegas H, Hentall ID, Zorman G (1983) Evidence that disinhibition of brain stem neurons contributes to morphine analgesia. Nature 306:684–686

    PubMed  CAS  Google Scholar 

  • Fink BR, Cairns AM (1982) A bioenergetic basis for peripheral nerve fiber dissociation. Pain 12:307–317

    PubMed  CAS  Google Scholar 

  • Fink BR, Cairns AM (1983 a) Test of differential block by lidocaine in individual nerve fibers. Reg Anesth 8:36–37

    Google Scholar 

  • Fink BR, Cairns AM (1983 b) Differential peripheral axon block with lidocaine: unit studies in the cervical vagus nerve. Anesthesiology 59:182–186

    PubMed  CAS  Google Scholar 

  • Fink BR, Cairns AM (1983 c) A new approach to differential peripheral nerve fiber block. Na+, K+-ATPase inhibition. Anesthesiology 59:127–131

    PubMed  CAS  Google Scholar 

  • Fink BR, Cairns AM (1984) Differential slowing and block of conduction by lidocaine in individual afferent myelinated and unmyelinated axons. Anesthesiology 60:111–120; 515

    PubMed  CAS  Google Scholar 

  • Fink BR, Cairns AM (1984 b) Differential block times of individual axons. Reg Anesth 9:36

    Google Scholar 

  • Fitzgerald M (1983) Capsaicin: action on peripheral nerves. A review. Pain 15:109–130

    PubMed  CAS  Google Scholar 

  • Ford DJ, Raj PP, Pritam S, Regan KR, Ohlweiler D (1984) Differential peripheral nerve block by local anesthetics in the cat. Anesthesiology 60:28–33

    PubMed  CAS  Google Scholar 

  • Frank JI (1980) Functional reorganization of cat somatic sensory motor cortex Sml after selective dorsal root rhizotomies. Brain Res 186:458–462

    Google Scholar 

  • Franz DN, Iggo A (1968) Conduction failure in myelinated and non-myelinated axons at low temperatures. J Physiol (Lond) 199:319–345

    CAS  Google Scholar 

  • Franz DN, Perry RS (1974) mechanisms for differential block among single myelinated and non-myelinated axons by procaine. J Physiol (Lond) 236:193–210

    CAS  Google Scholar 

  • Fruhstorfer H, Lindblom U (1983) Vascular participation in deep cold pain. Pain 17: 235–241

    PubMed  CAS  Google Scholar 

  • Fukushima K, Yohara O, Kato M (1975) Differential blocking of motor fibers by direct current. Pfiugers Arch 358:235–242

    CAS  Google Scholar 

  • Ganong WF (1981) Review of medical physiology. Lange, Los Altos, pp 31–45

    Google Scholar 

  • Gasser HS (1935 a) Changes in nerve-potentials produced by rapidly repeated stimuli and their relation to the responsiveness of nerve to stimulation. Am J Physiol 35–50

    Google Scholar 

  • Gasser HS (1935 b) Conduction in nerves in relation to fiber types. Res Publ Assoc Res Nerve Ment Dis 23:44–62; 15:35–59

    Google Scholar 

  • Gasser HS (1943) Pain-producing impulses in peripheral nerves. Res Publ Assoc Res Nerv Ment Dis 23:44–62

    Google Scholar 

  • Gasser HS (1950) Unmedullated fibers originating in dorsal root ganglia. J Gen Physiol 33:651–690

    PubMed  CAS  Google Scholar 

  • Gasser HS, Erlanger J (1927) The role played by the sizes of the constituent fibers of a nerve trunk in determining the form of its action potential wave. Am J Physiol 80:522–547

    Google Scholar 

  • Gasser HS, Erlanger J (1929) Role of fiber size in establishment of nerve block by pressure or cocaine. Am J Physiol 88:581–591

    Google Scholar 

  • Gasser HS, Grundfest H (1939) Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A-fibers. Am J Physiol 127:393–414

    Google Scholar 

  • Gasser HS, Richards CH, Grundfest H (1938) Properties of the nerve fibers of slowest conduction in the frog. Am J Physiol 123:299–306

    Google Scholar 

  • Georgopoulos AP (1977) Stimulus-response relations in high-threshold mechanothermal fibers innervating primate glabrous skin. Brain Res 128:547–552

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Mountcastle VB (1976) Functional properties of primary afferent units probably related to pain mechanisms in primate glabrous skin. J Neurophysiol 39: 71–83

    PubMed  CAS  Google Scholar 

  • Gerick JE, Charles MA, Grodsky GM (1976) Regulation of pancreatic insulin and glucagon secretion. Annu Rev Physiol 38:353

    Google Scholar 

  • Ghia JN, Toomey TC, Mao W, Duncan G, Gregg JM (1979) Towards an understanding of chronic pain mechanisms: the use of psychologic tests and a refined differential spinal block. Anesthesiology 50:20–25

    PubMed  CAS  Google Scholar 

  • Gilliatt RW (1980) Acute compression block. In: Sumner AJ (ed). The physiology of peripheral nerve disease, Chap 9. Saunders, Philadelphia, pp 287–315

    Google Scholar 

  • Gissen AJ, Covino BG, Gregus J (1980) Differential sensitivities of mammalian nerve fibers to local anesthetic agents. Anesthesiology 53:467–474

    PubMed  CAS  Google Scholar 

  • Gissen AJ, Covino BG, Gregus J (1982 a) Differential sensitivity of fast and slow fibers in mammalian nerve: II. Margin of safety for nerve transmission. Anesth Analg 61: 561–569

    PubMed  CAS  Google Scholar 

  • Gissen AJ, Covino BG, Gregus J (1982) Differential sensitivity of fast and slow fibers in mammalian nerve: III. Effect of etidocaine and bupivacaine on fast/slow fibers. Anesth Analg 61:570–575

    PubMed  CAS  Google Scholar 

  • Greene NM (1958) Area of differential block in spinal anesthesia with hyperbaric tetracaine. Anesthesiology 19:45–50

    PubMed  CAS  Google Scholar 

  • Grossman Y, Parnas I, Spira ME (1979) Differential conduction block in branches of a bifurcating axon. J Physiol (Lond) 295:282–305

    Google Scholar 

  • Grundfest H (1939) Properties of mammalian B-fibers. Am J Physiol 127:252–262

    Google Scholar 

  • Hallin RG, Torebjork HE (1973) Electrically induced A and C-fibre responses in intact human skin nerves. Exp Brain Res 16:309–320

    PubMed  CAS  Google Scholar 

  • Hallin RG, Torebjork HE (1976) Studies on cutaneous A and C-fibre afferents. Skin nerve blocks and perception. In: Zotterman Y (ed) Sensory functions of the skin in primates. Pergamon, Oxford, pp 137–149

    Google Scholar 

  • Heavner J, de Jong RH (1974) Lidocaine blocking concentrations for B- and C-fibers. Anesthesiology 40:228–233

    PubMed  CAS  Google Scholar 

  • Heinbecker P, Bartley SH (1940) Action of ether and nembutal on the nervous system. J Neurophysiol 3:219–236

    CAS  Google Scholar 

  • Heinbecker P, Bishop GH (1935) The mechanism of painful sensations. Res Publ Assoc Res Nerve Ment Dis 15:226–238

    Google Scholar 

  • Heinbecker P, O’Leary J (1933) The mammalian vagus nerve - a functional and histological study. Am J Physiol 106:623–646

    Google Scholar 

  • Heinbecker P, Bishop GH, O’Leary J (1933) Pain and touch fibers in peripheral nerves. Arch Neurol Psychiatr 29:771–789

    Google Scholar 

  • Heinbecker P, Bishop GH, O’Leary J (1934) Analysis of sensation terms of nerve impulses. Arch Neurol Psychiatr 31:34–53

    Google Scholar 

  • Hille B (1968) Pharmacological modifications of the sodium channels of frog nerve. J Gen Physiol 51:199–219

    PubMed  CAS  Google Scholar 

  • Hille B (1977) The pH-dependent rate of action of local anesthetics on the node of Ranvier. J Gen Physiol 69:475–496

    PubMed  CAS  Google Scholar 

  • Henneman E (1980) Organization of the spinal cord and its reflexes. In: Mountcastle VB (ed) Medical physiology. Mosby, St. Louis, pp 762–786

    Google Scholar 

  • Hunt CC, McIntyre AK (1960 a) Properties of cutaneous touch receptors in cat. J Physiol (Lond) 153:88–98

    CAS  Google Scholar 

  • Hunt CC, McIntyre AK (1960 b) An analysis of fibre diameter and receptor characteristics of myelinated cutaneous afferent fibres in cat. J Physiol (Lond) 153:99–112

    CAS  Google Scholar 

  • Ichioka M, Uehara Y, Seikichi K (1960) On the local response of a single node of Raniver under various conditions. Jpn J Physiol 10:235–245

    PubMed  CAS  Google Scholar 

  • Iggo A (1960) Cutaneous mechanoreceptors with afferent C-fibres. J Physiol (Lond) 152:337–353

    CAS  Google Scholar 

  • Iggo A, Andres KH (1982) Morphology of cutaneous receptors. Annu Rev Neurosci 5: 1–33

    PubMed  CAS  Google Scholar 

  • Ignelzi RJ, Nyquist JK (1979 a) Observations on fast axoplasmic transport in peripheral nerve following repetitive electrical stimulation. Pain 7:313–320

    PubMed  CAS  Google Scholar 

  • Ignelzi RJ, Nyquist JK (1979 b) Excitability changes in peripheral nerve fibers after repetitive electrical stimulation. J Neurosurg 51:824–833

    PubMed  CAS  Google Scholar 

  • Ignelzi RJ, Nyquist JK, Tighe WJ (1981) Repetitive electrical stimulation of peripheral nerve and spinal cord activity. Neurol Res 3:195–208

    PubMed  CAS  Google Scholar 

  • Ito M, Takahashi I (1960) Impulse conduction through spinal ganglion. In: Katsuki Y (ed) Electrical activity of single cells. Ikagu Shoin, Tokyo, pp 159–179

    Google Scholar 

  • Jack JJB (1975) Physiology of peripheral nerve fibers in relation to their size. Br J Anaesth 47:173–182

    PubMed  Google Scholar 

  • Jancso G, Kiraly E, Jancso-Gabor A (1977) Pharmacologically induced selective degeneration of chemosensitive primary sensitive neurons. Nature 270:741–743

    PubMed  CAS  Google Scholar 

  • Jänig W (1982) The autonomic nervous system. In: Human physiology. Schmidt RF, Thews G (eds) Springer, Berlin, pp 111–149

    Google Scholar 

  • Jong, de RH (1980 a) Clinical physiology of local anesthetic action. In: Neural blockade in clinical anesthesia and management of pain, Chap 2. Cousins MS, Bridenbaugh PO (eds). JP Lippincott Co., Philadelphia, pp 21–44

    Google Scholar 

  • Jong, de RH (1980 b) Editorial views: differential nerve block by local anesthetics. Anesthesiology 53:443

    PubMed  Google Scholar 

  • Jong, de RH, Cullen SC (1963) Theoretical aspects of pain: bizarre pain phenomena during low spinal anesthesia. Anesthesiology 24:628–635

    Google Scholar 

  • Katz J, Joseph (JW (1980) Neuropathology of neurolytic and semidestructive agents. In; Cousins MJ, Bridenbaugh PO (eds) Neural Blockade. Lippincott, Philadelphia, pp 122–132

    Google Scholar 

  • Krnjević K, Miledi R (1959) Presynaptic failure of neuromuscular propagation in rats. J Physiol (Lond) 149:1–22

    Google Scholar 

  • LaMotte RH (1984) Cutaneous nociceptors and pain sensation in normal and hyperalgesic skin. Adv Pain Res Ther 6:69–82

    Google Scholar 

  • Landon DN (1982) The structure of the nerve fiber. In Culp WJ, Ochoa J (eds) Abnormal nerves and muscles as impulse generators. Oxford University Press, New York, p 27–53

    Google Scholar 

  • Landon DN, Langley OK (1971) The local chemical environment of nodes of Ranvier: a study of cation binding. J Anat 108:419–432

    PubMed  CAS  Google Scholar 

  • Larrabee MG, Posternak JM (1952) Selective action of anesthetics on synapses and axons in mammalian sympathetic ganglia. J Neurophysiol 15:91–114

    PubMed  CAS  Google Scholar 

  • Leatherdale RAL (1956) Phantom limb pain associated with spinal analgesia. Anaesthesia 11:249–251

    PubMed  CAS  Google Scholar 

  • Lehmann JF (1937) The effect of changes in pH on the action of mammalian. A nerve fibers. Am J Physiol 118:600–612

    CAS  Google Scholar 

  • Leksell L (1945) The action potential and excitatory effects of small ventral root fibers to skeletal muscle. Acta Physiol Scand (Suppl) 31:1–84

    Google Scholar 

  • Leone J, Ochs S (1978) Anoxic block and recovery of axoplasmic transport and electrical excitability of nerve. J Neurobiol 9:229–245

    PubMed  CAS  Google Scholar 

  • Levine JW, Terman GW, Shavit Y, Nelson LR, Liebeskind JF (1984) Neural, neurochemical, and hormonal bases of stress-induced analgesia. In: Kruger L, Liebeskind JC (eds) Advances in pain research and therapy, vol 6. Raven, New York, pp 277–288

    Google Scholar 

  • Lewis T (1942) Pain. MacMillan, London, pp 1–192

    Google Scholar 

  • Lewis T, Pickering GW, Rothchild P (1931) Centripetal paralysis arising out of arrested bloodflow to the limbs including notes on a form of tingling. Heart 16:1–32

    Google Scholar 

  • Lindblom U, Meyerson BA (1975) Influence on touch, vibration and pain of dorsal column stimulation in man. Pain 1:251–270

    Google Scholar 

  • Lorente de Nó R (1947 a) Carbon dioxide and nerve function. In: Studies from the Rockefeller Institute for Medical Research, New York, vol 131, p 148–194

    Google Scholar 

  • Lorente de Nó R (1947 b) Effects of sugars and other substances upon nerve. A study of nerve physiology. Studies from the Rockefeller Institute for Medical Research, New York, vol 131, pp 195–243

    Google Scholar 

  • Lorente de No R, Condouris GA (1959) Decremental conduction in peripheral nerve: integration of stimuli in the neuron. PNAS 45:592–617

    Google Scholar 

  • Lundborg G (1980) Intraneural microcirculation and peripheral nerve barriers. Techniques for evaluation - clinical implications. In: Omer GE, Spinner M (eds) Managment of peripheral nerve problems. Saunders, Philadelphia, pp 903–916

    Google Scholar 

  • Lundborg G, Myers R, Powell H (1983) Nerve compression injury and increased endoneurial fluid pressure. A “miniature compartment syndrome”. J Neurol Neurosurg Psy-chiatr 46:1119–1124

    CAS  Google Scholar 

  • Mackenzie RA, Burke D, Skuse NF, Lethlean AK (1975) Fibre function and perception during cutaneous nerve block. J Neurol Neurosurg Psychiatr 38:865–873

    PubMed  CAS  Google Scholar 

  • Mackenzie RA, Skuse NF, Lethlean AK (1977) A micro-electrode study of peripheral neuropathy in man: 2. Response to conditioning stimuli. J Neurol Sci 34:175–189

    PubMed  CAS  Google Scholar 

  • Malenka RC, Kocsis JD, Ransom BR, Waxman SG (1981) Modulation of parallel fiber excitability by postsynaptically mediated changes in extracellular potassium. Science 214:339–341

    PubMed  CAS  Google Scholar 

  • Manfredi M (1970) Differential block of conduction of larger fibers in peripheral nerve by direct current. Arch Ital Biol 108:52–71

    PubMed  CAS  Google Scholar 

  • Martin JH (1982) Somatic sensory system I: receptor physiology and submodality coding. In: Kandel ER, Schwartz JF (eds) Principles of neural science. Elsevier, New York, pp 157–169

    Google Scholar 

  • Matthews PBC (1982) Where does Sherrington’s “muscular sense” originate? Muscles, joints, corollary discharges? Annu Rev Neurosci 5:189–218

    PubMed  CAS  Google Scholar 

  • Matthews PBC, Rushworth G (1957 a) The selective effect of procaine on the stretch reflex and tendon jerk of soleus muscle when applied to its nerve. J Physiol (Lond) 185: 245–262

    Google Scholar 

  • Matthews PBC, Rushworth G (1957 b) The relative sensitivity of muscle nerve fibres to procaine. J Physiol (Lond) 135:263–269

    CAS  Google Scholar 

  • Mayer DJ, Price DD, Becker DP (1975) Neurophysiological characteristics of the anterolateral spinal cord neurons contributing to pain perception in man. Pain 1:51–58

    PubMed  CAS  Google Scholar 

  • Melzack R, Wall PD (1965) Pain mechanism: a new theory. Science 150:971–979

    PubMed  CAS  Google Scholar 

  • Mendell LM, Henneman E (1979) Input to motoneuron pools and its effects. Chapt 27. In: Mountcastle VB (ed) Medical physiology, vol 1. Mosby, St. Louis, pp 742–761

    Google Scholar 

  • Mendell LM, Wall PD (1965) Responses of single dorsal cord cells to peripheral cutaneous unmyelinated fibers. Nature 206:97–99

    PubMed  CAS  Google Scholar 

  • Metzler J, Marks PS (1979) Functional changes in cat somatic sensory-motor cortex during short-term reversible epidural blocks. Brain Res 177:379–383

    PubMed  CAS  Google Scholar 

  • Meyer G A, Fields HL (1972) Causalgia treated by selective large fibre stimulation of peripheral nerve. Brain 95:163 Miller K (1975) The pressure reversal of anesthesia and the critical volume hypothesis. In: Fink BR (ed) Molecular mechanisms of anesthesia, vol 1. Raven, New York, pp 341–351

    PubMed  CAS  Google Scholar 

  • Miller K (1975) The pressure reversal of anesthesia and the critical volume hypothesis. In: Fink BR (ed) Molecular mechanisms of anesthesia, vol 1. Raven, New York, pp 341–351

    Google Scholar 

  • Morison DH (1981) A double-blind compression of carbonated lidocaine and lidocaine hydrochloride in epidural anaesthesia. Can Anaesth Soc J 28:387–389

    PubMed  CAS  Google Scholar 

  • Mountcastle VB (1980 a) Sensory receptors and neural encoding: Introduction to sensory processes. In: Mountcastle VB (ed) Medical physiology, voll. Mosby, St. Louis, pp 327–347

    Google Scholar 

  • Mountcastle VB (1980 b) Pain and temperature sensibilities. In: Mountcastle VB (ed) Medical physiology, vol 1. Mosby, St. Louis, pp 391–427

    Google Scholar 

  • Müller J (1826) Zur vergleichenden Physiologie des Gesichtssinnes des Menschen und der Thiere nebst einem Versuch über die Bewegungen der Augen und über den menschlichen Blick. Cnoblock, Leipzig

    Google Scholar 

  • Nagy JI (1982) Capsaicin’s action on the nervous system. Trends in Neuroscience 5: 362–365

    CAS  Google Scholar 

  • Nathan PW, Sears TA (1961) Some factors concerned in differential nerve block by local anaesthetics. J Physiol (Lond) 157:565–580

    CAS  Google Scholar 

  • Nathan PW, Sears TA (1962) Differential nerve block by sodium-free and sodium-deficient solutions. J Physiol (Lond) 164:375–394

    CAS  Google Scholar 

  • Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol (Lond) 321: 225–257

    CAS  Google Scholar 

  • Nicholson C, Phillips JM (1982) Diffusion in the brain cell microenvironment. Lectures on Mathematics in the Life Sciences 15:103–122

    Google Scholar 

  • Ochoa J (1984) Peripheral unmyelinated units in man: structure, function, disorder and role in sensation. Kruger L, Liebeskind JC (eds). Advances in Pain Research Therapy, vol 6. Raven, New York, pp 53–68

    Google Scholar 

  • Ochoa J, Torebjork HE (1983) Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J Physiol (Lond) 342:633–654

    CAS  Google Scholar 

  • Ochoa J, Torebjork HE, Culp WJ, Schady W (1982) Abnormal spontaneous activity in single sensory nerve fibers in humans. Muscle nerve 5:574–577

    Google Scholar 

  • Paintal AS (1965 a) Block of conduction in mammalian myelinated fibers by low temperatures. J Physiol (Lond) 180:1–19

    CAS  Google Scholar 

  • Paintal AS (1965 b) Effects of temperature on conduction in single vagal and saphenous myelinated nerve fibres of the cat. J Physiol (Lond) 180:20–49

    CAS  Google Scholar 

  • Perl ER (1980) Afferent basis of nociception and pain: evidence from the characteristics of sensory receptors and their projections to the spinal dorsal horn. Res Publ Assoc Nerv Ment Dis 58:19–45

    CAS  Google Scholar 

  • Perl ER (1984) Characterization of nociceptors and their activation of neurons in the superficial dorsal horn: first steps for the sensation of pain. In: Kruger L, Liebeskind JC (eds) Advances in pain research and therapy, vol 6. Raven, New York, pp 23–51

    Google Scholar 

  • Price DD (1984) Roles of psychophysics, neuroscience and experimental analysis in the study of pain. In: Kruger L, Liebeskind JC (eds), Advances in pain research and therapy, vol 6. Raven, New York, pp 341–355

    Google Scholar 

  • Rang HP, Ritchie JM (1968) On the electrogenic sodium pump in mammalian non-mye-linated nerve fibers and its activation by various external cations. J Physiol (Lond) 196:183–221

    CAS  Google Scholar 

  • Ranson SW (1931) Cutaneous sensory fibers and sensory conduction. Arch Neurol Psychiatr 26:1122–1144

    Google Scholar 

  • Ranson SW, Droegenmueller WH, Davenport HK, Fisher C (1935) Number, size and mye-lination of the sensory fibers in the cerebrospinal nerves. Res Publ Assoc Nerv Ment Dis 15:3–34

    Google Scholar 

  • Raymond SA (1979) Effects of nerve impulses on threshold of frog sciatic nerve fibres. J Physiol (Lond) 290:273–303

    CAS  Google Scholar 

  • Raymond SA, Bokesch PM (1983) Effects of CO2/bicarbonate vs an organic buffer on nerve threshold and local anesthetic block at varying pH. Anesthesiology 59:A295

    Google Scholar 

  • Raymond SA, Lief PA (1984) Psychological assessment of adaptation to transcutaneous electrical nerve stimulation. Pain, Suppl 2:569

    Google Scholar 

  • Raymond SA, Lettvin JY (1978) Aftereffects of activity in peripheral axons as a clue to nervous coding. In: Waxman SG (ed) Physiology and pathobiology of axons. Raven, New York, pp 203–225

    Google Scholar 

  • Raymond SA, Roscoe RF (1984) Effects of lidocaine on threshold of nerve axons. Reg Anesth 9:51

    Google Scholar 

  • Raymond SA, Roscoe RF (1983) Aftereffects of nerve impulses on threshold of frog sciatic fibers depends on pH (pCO2). Soc Neurosci Abstracts 9:513

    Google Scholar 

  • Reynolds DV (1969) Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164:444–445

    PubMed  CAS  Google Scholar 

  • Ritchie JM (1982) Sodium channel density in excitable membranes. In: Culp WJ, Ochoa J (eds) Abnormal nerves and muscles as impulse generators. Oxford University Press, New York, pp 168–190

    Google Scholar 

  • Ritchie JM, Ritchie B, Greengard P (1965) The effect of the nerve sheath on the action of local anesthetics. J Pharmacol Exp Ther 150:160–164

    PubMed  CAS  Google Scholar 

  • Rosenberg PH, Heavner JE (1980) Temperature-dependent nerve blocking action of lidocaine and halothane. Acta Anesth Scand 24:314–320

    CAS  Google Scholar 

  • Ruch TC (1979) Pathophysiology of Pain. In: Ruch TC, Patton HD (eds) Physiology and biophysics. Saunders, Philadelphia, pp 272–324

    Google Scholar 

  • Rud J (1961) Local anesthetics: an electrophysiological investigation of local anesthesia of peripheral nerves with special reference to xylocaine. Acta Physiol Scand 51 (Suppl) 178:1–171

    Google Scholar 

  • Rydevik B (1979) Compression injury of peripheral nerve. PhD thesis, Department of Anatomy, University of Gothenburg

    Google Scholar 

  • Sarnoff SJ, Arrowood JG (1946) Differential spinal block - a preliminary report. Surgery 20:150–159

    PubMed  CAS  Google Scholar 

  • Samoff SJ, Arrowood JG (1947 a) Differential spinal block: II. The reaction of sudomotor and vasomotor fibers. J Clin Invest 26:203–216

    Google Scholar 

  • Samoff SJ, Arrowood JG (1947 b) Differential spinal block: III. The block of cutaneous and stretch reflexes in the presence of unimpaired position sense. J Neurophysiol 10:205:210

    Google Scholar 

  • Samoff SJ, Arrowood JG, Chapman WP (1948) Differential spinal block. IV. The investigation of intestinal dyskinesia, colonic artery and visceral afferent fibers. Surg Gynecol Obstet 86:571

    Google Scholar 

  • Schimek F, Sumi SM, Fink BR (1984) Differential effects of hyposomatic hyponatric swelling on A- and C-fibers. Anesthesiology 60:198–204

    PubMed  CAS  Google Scholar 

  • Schwartz HG (1950) Neurosurgical relief of intractable pain. Surg Clin North Am 30: 1379–1389

    Google Scholar 

  • Schwarz W, Palade PT, Mille B (1977) Local anesthetics: effect of pH on use-dependent block of sodium channels in frog muscle. Biophys J 20:343–368

    PubMed  CAS  Google Scholar 

  • Scurlock JE, Heavner JE, de Jong RG (1975) Differential B- and C-fibre block by an amide- and an ester-linked local anesthetic. Br J Anaesth 47:1135–1139

    PubMed  CAS  Google Scholar 

  • Sessle BJ (1979) Is the tooth pulp a “pure” source of noxious input? In: Bonica JJ (ed) Advances in pain research and therapy, vol 3. Raven, New York, pp 245–260

    Google Scholar 

  • Sinclair DC (1955) Cutaneous sensation and the doctrine of specific energy. Brain 78: 584–614

    PubMed  CAS  Google Scholar 

  • Sinclair DC, Hinshaw JR (1950 a) Sensory changes in procaine nerve block. Brain 73: 224–243

    PubMed  CAS  Google Scholar 

  • Sinclair DC, Hinshaw JR (1950 b) A comparison of the sensory dissociation produced by procaine and by limb compression. Brain 73:480–498

    PubMed  CAS  Google Scholar 

  • Sinclair DC, Hinshaw JR (1951) Sensory changes in nerve blocks induced by cooling. Brain 74:318–355

    PubMed  CAS  Google Scholar 

  • Smith DO (1980) Mechanisms of action potential propagation failure at sites of axonal branching in the crayfish. J Physiol (Lond) 301:243–259

    CAS  Google Scholar 

  • Staiman A, Seeman P (1974) Impulse-blocking concentration of anesthetics, alcohols, anticonvulsants, barbiturates, and narcotics on phrenic and sciatic nerves. Can J Physiol Pharmacol 52:535–550

    PubMed  CAS  Google Scholar 

  • Staiman A, Seeman P (1977) Conduction-blocking concentration of anesthetics increase with nerve axon diameter: studies with alcohol, lidocaine and tetrodotoxin on single myelinated fibers. J Pharmacol Exp Therap 201:340–349

    CAS  Google Scholar 

  • Stansfeld CE, Wallis DI (1983) Differences in tetrodotoxin (TTX) sensitivity in group A-and C–cells of the rabbit nodose ganglion. J Physiol 341:14P-15P

    Google Scholar 

  • Strichartz GR (1973) The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J gen Physiol 62:37–57

    PubMed  CAS  Google Scholar 

  • Strichartz GR, Wang GK (1986) The kinetic basis for phasic local anesthetic blockade of neuronal sodium channels. In: Roths, Miller K (eds) Molecular and cellular mechanics of anesthetics. Plenum, New York, pp 217–226

    Google Scholar 

  • Strichartz GR, Zimmermann (1983) Selective conduction blockade among different fiber types in mammalian nerves by lidocaine combined with low temperature. Soc Neurosci (Abstr) 9:675

    Google Scholar 

  • Swadlow HA, Kocsis JD, Waxman SG (1980) Modulation of impulse conduction along the axon tree. Annu Rev Biophys Bioeng 9:143–179

    PubMed  CAS  Google Scholar 

  • Tanner JA (1962) Reversible blocking of nerve conduction by alternating current excitation. Nature 195:712–713

    PubMed  CAS  Google Scholar 

  • Tasaki I (1953) Nervous transmission. Thomas, Springfield, Ill, pp 164

    Google Scholar 

  • Tasaki I (1982) Physiology and electrochemistry of nerve fibers. Academic, New York, pp 1–348

    Google Scholar 

  • Tasker RR, Organ LW, Hawrylyshyn P (1980) Deafferentation and Causalgia. Res Publ Assoc Res Nerv Ment Dis 58:305–334

    PubMed  CAS  Google Scholar 

  • Toman JEP (1952) Neuropharmacology of peripheral nerve. Pharmacol Rev 4:168–218

    PubMed  CAS  Google Scholar 

  • Torebjörk HE, Hallin RG (1973) Perceptual changes accompanying controlled preferential blocking of A- and C-fibre responses in intact human skin nerves. Exp Brain Res 16:321–332

    PubMed  Google Scholar 

  • Torebjörk HE, Hallin RG (1974) Responses in human A- and C-fibres to repeated electrical intradermal stimulation. J Neurol Neurosurg Psychiatr 37:653–664

    PubMed  Google Scholar 

  • Torebjörk HE, Hallin RG (1979) Microneurographic studies of peripheral pain mechanisms in man. In: Bonica JJ et al. (ed) Advances in pain research and therapy. Raven, New York, pp 121–131

    Google Scholar 

  • Torebjörk HE, Ochoa JL (1980) Specific sensations evoked by activity in single identified sensory units in man. Acta Physiol Scand 110:445–447

    PubMed  Google Scholar 

  • Torebjörk HE, Ochoa JL, Schady W (1984 a) Referred pain from intraneural stimulation of muscle fascicles in median nerve. Pain 18:145–156

    PubMed  Google Scholar 

  • Torebjörk HE, LaMotte R, Robinson CT (1984 b) Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: simultaneous recordings in humans of sensory judgements of pain and evoked responses in nociceptors with C-fibers. J Neurophysiol 51:341–355

    Google Scholar 

  • Tucker GT, Mather LE (1980) Absorption and disposition of local anesthetics: pharmacokinetics. In: Cousins MJ, Bridenbaugh PO (eds) Neural blockade. Lippincott, Philadelphia, pp 45–85

    Google Scholar 

  • Uehara Y (1958) Conduction of nervous impulses in NaCl deficient media. Jpn J Physiol 8:282–291

    PubMed  CAS  Google Scholar 

  • Uehara Y (1960) Narcotic and NaCl deficiency as blocking agents. Jpn J Physiol 10: 267–274

    PubMed  CAS  Google Scholar 

  • Ulbricht W (1981) Kinetics of drug action and equilibrium results at the node of Ranvier. Physiol Rev 61:785–828

    PubMed  CAS  Google Scholar 

  • Urban BJ, McKain CW (1982) Onset and progression of intravenous regional anesthesia with dilute lidocaine. Anesth Analg 61:834–838

    PubMed  CAS  Google Scholar 

  • Vallbo AB, Hagbarth KE, Torebjork HE, Hallin BG (1979) Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev 59:919–957

    PubMed  CAS  Google Scholar 

  • Wall PD (1971) Somatosensory mechanisms. In: Remond A (ed) Handbook EEG and clinical neurophysiology, vol 9. Somatic sensation. Elsevier, Amsterdam pp 1–6

    Google Scholar 

  • Wall PD (1979) Changes in damaged nerve and their sensory consequences. In: Bonica JJ (ed) Advances in pain research and therapy, vol 3 Raven, New York, pp 39–52

    Google Scholar 

  • Wall PD (1980) The role of substantia gelatinosa as a gate control. Res Publ Assoc Res Nerv Ment Disease 58:205–231

    CAS  Google Scholar 

  • Wall PD (1982) The effect of peripheral nerve lesions and of neonatal capsaicin in the rat on primary afferent depolarization. J Physiol (Lond) 329:21–35

    CAS  Google Scholar 

  • Wall PD (1984) Mechanisms of acute chronic pain. In: Kruger L, Liebeskind JC (eds) Advances in pain research and therapy, vol 6. Neural mechanisms of pain. Raven, New York, pp 95–104

    Google Scholar 

  • Wall PD, Devor M (1982) Consequences of peripheral nerve damage in the spinal cord and in neighboring intact peripheral nerves. In: Culp WJ, Ochoa J (eds) Abnormal nerves and muscles as impulse generators. Oxford University Press, New York, pp 588–603

    Google Scholar 

  • Wall PD, Fitzgerald M, Nussbaumer JC, Loos H van der, Devor M (1982) Somatotopic maps are disorganized in adult rodents treated with capsaicin as neonates. Nature 295:691–693

    PubMed  CAS  Google Scholar 

  • Watson PJ (1967) Interaction between acetylcholine and guanethidine on sensory C-fibers. Eur J Pharmacol 1:407–413

    PubMed  CAS  Google Scholar 

  • Waxman SG (1981) Cellular aspects of conduction in myelinated nerve fibers in relation to clinical deficit. In: Dorfman LJ, Cummins KL, Leifer LJ (eds) Conduction velocity distributions: a population approach to electrophysiology of nerve. AR Liss, New York, pp 1–15

    Google Scholar 

  • Wildsmith JAW, Gissen AJ, Gregus J, Covino BG (1985) The differential nerve blocking activity of amino-ester local anaesthetics. Br J Anaesth 57:612–620

    PubMed  CAS  Google Scholar 

  • Willis WD (1980) Neurophysiology of nociception and pain in the spinal cord. Res Pub Assoc Res Nerve Ment Dis 58:77–92

    CAS  Google Scholar 

  • Winnie AP, Collins YJ (1968) The Pain Clinic. I. Differential neural blockade in pain syndromes of questionable etiology. Med Clin North Am 52:123–129

    PubMed  CAS  Google Scholar 

  • Wood KM (1978) The use of phenol as a neurolytic agent: a review. Pain 5:205–229

    PubMed  CAS  Google Scholar 

  • Young RF, Feldman RA, Kroening R, Fulton W, Morris J (1984) Electrical stimulation of the brain in the treatment of chronic pain in man. In: Kruger L, Liebeskind JC (eds) Advances in pain research and therapy, vol 6. Raven, New York, pp 289–303

    Google Scholar 

  • Zimmermann M (1968) Selective activation of C-fibers. Pfluegers Arch 301:329–333

    CAS  Google Scholar 

  • Zimmermann M (1979) Peripheral and central nervous mechanisms of nociception, pain, and pain therapy: facts and hypotheses. In: Bonica JJ (ed), Advances in pain research and therapy, vol 3, Raven, New York, pp 3–32

    Google Scholar 

  • Zimmermann M, Sanders K (1982) Responses of nerve axons and receptor endings to heat, ischemia, and algesic substances. Abnormal excitability of regenerating nerve endings. In: Culp WJ, Ochoa J (eds) Abnormal nerves and muscles as impulse generators. Oxford University Press, New York, pp 513–532

    Google Scholar 

  • Zotterman Y (1939) Touch pain and tickling: an electrophysiological investigation on cutaneous sensory nerves. J Physiol (Lond) 95:1–28

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raymond, S.A., Gissen, A.J. (1987). Mechanisms of Differential Nerve Block. In: Strichartz, G.R. (eds) Local Anesthetics. Handbook of Experimental Pharmacology, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71110-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71110-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71112-1

  • Online ISBN: 978-3-642-71110-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics