Skip to main content

Generation of Epileptiform Field Potentials in the Cerebral Cortex

  • Conference paper
Presurgical Evaluation of Epileptics

Abstract

This chapter deals with the generation of potentials detectable in the space surrounding cellular elements of central nervous structures. Such field potentials have a prominent significance in the investigation of brain functions. Thus, the conventional electroencephalogram represents an essential tool in the diagnosis and classification of epileptic seizures as well as in the control of antiepileptic therapy. Also in experimental epileptology, field potentials have often been used in the functional analysis of neuronal populations. In the following, the mechanisms underlying the generation of seizure potentials in the cerebral cortex will be described. In this context, field potentials occurring during partial and generalized tonic-clonic seizures will be considered successively (Andersen and Andersson 1968; Caspers et al. 1984; Creutzfeldt and Houchin 1974; Goldensohn 1984; Klee et al. 1981; Lopes da Silva and van Rotterdam 1982; Prince 1974; Speckmann 1985; Speckmann and Caspers 1979 a; Speckmann and Elger 1982,1984; Speckmann et al. 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen P, Andersson SA (1968) Physiological basis of the alpha rhythm. Meredith, New York

    Google Scholar 

  • Caspers H (1959) Uber die Beziehungen zwischen Dendriten- potential und Gleichspannung an der Hirnrinde. Pflugers Arch 269: 157–181

    Article  CAS  Google Scholar 

  • Caspers H (1963) Relations of steady potential shifts in the cortex to the wakefulness-sleep spectrum. In: Brazier MAB (ed) Brain function. University of California Press, Berkeley, pp 177–213

    Google Scholar 

  • Caspers H, Speckmann E-J (1969) DC potential shifts in paroxysmal states. In: Jasper HH, Ward AA Jr, Pope A (eds) Basic mechanisms of the epilepsies. Little, Brown, Boston, pp 375–388

    Google Scholar 

  • Caspers H, Speckmann E-J (1974) Cortical DC shifts associated with changes of gas tension in blood and tissue. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 10, part A. Elsevier, Amsterdam, pp 41–65

    Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkiihler A (1979) Effects of C02 on cortical field potentials in relation to neuronal activity. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 151–163

    Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkiihler A (1980) Electro-genesis of cortical DC potentials. In: Kornhuber HH, Deecke L (eds) Motivation, motor and sensory processes of the brain: electrical potentials, behavior and clinical use. Prog Brain Res 54: 3–15

    Google Scholar 

  • Caspers H, Speckmann E-J, Lehmenkiihler A (1984) Electrogenesis of slow potentials of the brain. In: Elbert T, Rock- stroh B, Lutzenberger W, Birbaumer N (eds) Self-regulation of the brain and behavior. Springer, Berlin Heidelberg New York Tokyo, pp 26–41

    Chapter  Google Scholar 

  • Chatrian GE, Shaw C-M, Plum F (1964) Focal periodic slow transients in epilepsia partialis continua: clinical and pathological correlations in two cases. Electroencephalogr Clin Neurophysiol 16: 387–393

    Article  PubMed  CAS  Google Scholar 

  • Chatrian GE, Somasundaram M, Tassinari CA (1968) DC changes recorded transcranial during “typical” three per second spike and wave discharges in man. Epilepsia 9: 185–209

    Article  PubMed  CAS  Google Scholar 

  • Cohn R (1954) DC recordings of paroxysmal activity from the intact human head. Electroencephalogr Clin Neurophysiol 6: 692

    Google Scholar 

  • Cohn R (1963) DC potential variations in paroxysmal dis-charges. Electroencephalogr Clin Neurophysiol 15: 151

    Google Scholar 

  • Cohn R (1964) DC recordings of paroxysmal disorders in man. Electroencephalogr Clin Neurophysiol 17: 17–24

    Article  PubMed  CAS  Google Scholar 

  • Creutzfeldt OD, Houchin J (1974) Neuronal basis of EEG waves. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 2, part C. Elsevier, Amsterdam, pp 5–55

    Google Scholar 

  • Creutzfeldt OD, Watanabe S, Lux HD (1966) Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr Clin Neurophysiol 20: 19–37

    Google Scholar 

  • De Robertis EDP, Carrea R (eds) (1965) Biology of neuroglia. Prog Brain Res, vol 15. Elsevier, Amsterdam

    Google Scholar 

  • Elger CE, Speckmann E-J (1980) Focal interictal epileptiform discharges ( FIED) in the epicortical EEG and their relations to spinal field potentials in the rat. Electroencephalogr Clin Neurophysiol 48: 447–460

    Article  PubMed  CAS  Google Scholar 

  • Elger CE, Speckmann E-J (1983 a) Penicillin induced epileptic foci in the motor cortex: vertical inhibition. Electroencephalogr Clin Neurophysiol 56: 604–622

    Google Scholar 

  • Elger CE, Speckmann E-J ( 1983 b) Vertical inhibition in motor cortical epileptic foci and its consequences for descending neuronal activity to the spinal cord. In: Speckmann E-J, Elger CE (eds) Epilepsy and motor system. Urban und Schwarzenberg, Mtinchen, pp 152–160

    Google Scholar 

  • Elger CE, Speckmann E-J, Prohaska O, Caspers H (1981) Pattern of intracortical potential distribution during focal interictal epileptiform discharges ( FIED) and its relation to spinal field potentials in the rat. Electroencephalogr Clin Neurophysiol 51: 393–402

    Article  PubMed  CAS  Google Scholar 

  • Elger CE, Speckmann E-J, Caspers H, Prohaska O (1982) Focal interictal epileptiform discharges in the cortex of the rat: laminar restriction and its consequences for activity descending to the spinal cord. In: Klee MR, Lux HD, Speckmann E-J (eds) Physiology and pharmacology of epileptogenic phenomena. Raven, New York, pp 13–19

    Google Scholar 

  • Goldensohn ES (1984) Neurophysiologische Grundlagen der EEG-Aktivitat. In: Klass DW, Daly DD (eds) Klinische Elektroenzephalographie. Fischer, Stuttgart, pp 379–395

    Google Scholar 

  • Goldring S, O’Leary JL (1951) Experimentally derived correlates between ECG and steady cortical potential. J Neuro-physiol 14: 275–288

    CAS  Google Scholar 

  • Goldring S, O’Leary JL (1954) Correlation between steady transcortical potential and evoked response. II. Effect of veratrine and strychnine upon the responsiveness of visual cortex. Electroencephalogr Clin Neurophysiol 6: 201–212

    Article  PubMed  CAS  Google Scholar 

  • Gumnit R (1974) DC shifts accompanying seizure activity. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 10, part A. Elsevier, Amsterdam, pp 66–77

    Google Scholar 

  • Gumnit RJ, Matsumoto H, Vasconetto C (1970) DC activity in the depth of an experimental epileptic focus. Electroen-cephalogr Clin Neurophysiol 28: 333–339

    Article  CAS  Google Scholar 

  • Klee MR, Speckmann E-J, Lux HD (eds) (1981) Physiology and pharmacology of epileptogenic phenomena. Raven, New York

    Google Scholar 

  • Kostopoulos G, Avoli M, Gloor P (1983) Participation of cortical recurrent inhibition in the genesis of spike and wave discharges in feline generalized penicillin epilepsy. Brain Res 267: 101–112

    Article  PubMed  CAS  Google Scholar 

  • Kuffler SW, Nicholls JG (1966) The physiology of neuroglia cells. Erg Physiol 57: 1–90

    PubMed  CAS  Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29: 768–787

    PubMed  CAS  Google Scholar 

  • Lopes da Silva F, van Rotterdam A (1982) Biophysical aspects of EEG and MEG generation. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Urban and Schwar- zenberg, Baltimore, pp 15–26

    Google Scholar 

  • O’Leary JL, Goldring S (1964) DC potentials of the brain. Physiol Rev 44: 91–125

    PubMed  Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29: 788–806

    PubMed  CAS  Google Scholar 

  • Palay SL, Chan-Palay V (1977) General morphology of neurons and neuroglia. In: Kandel ER (ed) Handbook of physiology. The nervous system, vol 1, part 1. American Physiological Society, Bethesda, pp 5–37

    Google Scholar 

  • Petsche H, Pockberger H, Rappelsberger P (1981) Current source density studies of epileptic phenomena and the morphology of the rabbit’s striate cortex. In: Klee MR, Lux HD, Speckmann E-J (eds) Physiology and pharmacology of epileptogenic phenomena. Raven, New York, pp 53–63

    Google Scholar 

  • Pockberger H, Petsche H, Rappelsberger P (1983) Intracortical aspects of penicillin-induced seizure patterns in the rabbit’s motor cortex. In: Speckmann E-J, Elger CE (eds) Epilepsy and motor system. Urban und Schwarzenberg, Munchen, pp 161–178

    Google Scholar 

  • Pockberger H, Rappelsberger P, Petsche H ( 1984 a) Penicillin-induced epileptic phenomena in the rabbit’s neocortex. I. The development of interictal spikes after epicortical application of penicillin. Brain Res 309: 247–260

    Google Scholar 

  • Pockberger H, Rappelsberger P, Petsche H (1984b) Penicillin- induced epileptic phenomena in the rabbit’s neocortex. II. Laminar specific generation of interictal spikes after the application of penicillin to different cortical depths. Brain Res 309: 261–269

    Article  PubMed  CAS  Google Scholar 

  • Prince DA (1974) Neuronal correlates of epileptiform dis-charges and cortical DC potentials. In: Remond A (ed) Handbook of electroencephalography and clinical neuro-physiology, vol 2, part C. Elsevier, Amsterdam, pp 56–70

    Google Scholar 

  • Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) (1972) Experimental models of epilepsy. Raven, New York

    Google Scholar 

  • Somjen GG (1973) Electrogenesis of sustained potentials. Prog Neurobiol 1: 199–237

    Article  CAS  Google Scholar 

  • Somjen GG (1975) Electrophysiology of neuroglia. Ann Rev Physiol 37: 163–190

    Article  CAS  Google Scholar 

  • Somjen GG, Trachtenberg M (1979) Neuroglia as generator of extracellular current. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 21–32

    Google Scholar 

  • Speckmann E-J (1986) Experimentelle Epilepsieforschung. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Speckmann E-J, Caspers H (1974) The effect of 02- and C02-tensions in the nervous tissue on neuronal activity and DC-potentials. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 2, part C. Elsevier, Amsterdam, pp 71–89

    Google Scholar 

  • Speckmann E-J, Caspers H (eds) ( 1979 a) Origin of cerebral field potentials. Thieme, Stuttgart

    Google Scholar 

  • Speckmann E-J, Caspers H ( 1979 b) Cortical field potentials in relation to neuronal activities in seizure conditions. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 205–213

    Google Scholar 

  • Speckmann E-J, Elger CE (1982) Neurophysiological basis of the EEG and of DC potentials. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basic principles, clinical applications and related fields. Urban and Schwarzenberg, Baltimore, pp 1–13

    Google Scholar 

  • Speckmann E-J, Elger CE (1984) The neurophysiological basis of epileptic activity: a condensed overview. In: Degen R, Niedermeyer E (eds) Epilepsy, sleep and sleep deprivation. Elsevier, Amsterdam, pp 23–34

    Google Scholar 

  • Speckmann E-J, Caspers H, Janzen RWC (1972) Relations between cortical DC shifts and membrane potential changes of cortical neurons associated with seizure activity. In: Petsche H, Brazier MAB (eds) Synchronization of EEG activity in epilepsies. Springer, Vienna New York, pp 93–111

    Google Scholar 

  • Speckmann E-J, Caspers H, Janzen RWC (1978) Laminar dis-tribution of cortical field potentials in relation to neuronal activities during seizure discharges. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. IBRO monograph series, vol 3. Raven, New York, pp 191–209

    Google Scholar 

  • Speckmann E-J, Caspers H, Elger CE (1984) Neuronal mechanisms underlying the generation of field potentials. In: Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N (eds) Self-regulation of the brain and behavior. Springer, Berlin Heidelberg New York Tokyo, pp 9–25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Speckmann, EJ., Walden, J. (1987). Generation of Epileptiform Field Potentials in the Cerebral Cortex. In: Wieser, H.G., Elger, C.E. (eds) Presurgical Evaluation of Epileptics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71103-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71103-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71105-3

  • Online ISBN: 978-3-642-71103-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics