Generation of Epileptiform Field Potentials in the Cerebral Cortex

  • E.-J. Speckmann
  • J. Walden
Conference paper

Abstract

This chapter deals with the generation of potentials detectable in the space surrounding cellular elements of central nervous structures. Such field potentials have a prominent significance in the investigation of brain functions. Thus, the conventional electroencephalogram represents an essential tool in the diagnosis and classification of epileptic seizures as well as in the control of antiepileptic therapy. Also in experimental epileptology, field potentials have often been used in the functional analysis of neuronal populations. In the following, the mechanisms underlying the generation of seizure potentials in the cerebral cortex will be described. In this context, field potentials occurring during partial and generalized tonic-clonic seizures will be considered successively (Andersen and Andersson 1968; Caspers et al. 1984; Creutzfeldt and Houchin 1974; Goldensohn 1984; Klee et al. 1981; Lopes da Silva and van Rotterdam 1982; Prince 1974; Speckmann 1985; Speckmann and Caspers 1979 a; Speckmann and Elger 1982,1984; Speckmann et al. 1984).

Keywords

Dioxide Penicillin Tral Tetrazol Purpura 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen P, Andersson SA (1968) Physiological basis of the alpha rhythm. Meredith, New YorkGoogle Scholar
  2. Caspers H (1959) Uber die Beziehungen zwischen Dendriten- potential und Gleichspannung an der Hirnrinde. Pflugers Arch 269: 157–181CrossRefGoogle Scholar
  3. Caspers H (1963) Relations of steady potential shifts in the cortex to the wakefulness-sleep spectrum. In: Brazier MAB (ed) Brain function. University of California Press, Berkeley, pp 177–213Google Scholar
  4. Caspers H, Speckmann E-J (1969) DC potential shifts in paroxysmal states. In: Jasper HH, Ward AA Jr, Pope A (eds) Basic mechanisms of the epilepsies. Little, Brown, Boston, pp 375–388Google Scholar
  5. Caspers H, Speckmann E-J (1974) Cortical DC shifts associated with changes of gas tension in blood and tissue. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 10, part A. Elsevier, Amsterdam, pp 41–65Google Scholar
  6. Caspers H, Speckmann E-J, Lehmenkiihler A (1979) Effects of C02 on cortical field potentials in relation to neuronal activity. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 151–163Google Scholar
  7. Caspers H, Speckmann E-J, Lehmenkiihler A (1980) Electro-genesis of cortical DC potentials. In: Kornhuber HH, Deecke L (eds) Motivation, motor and sensory processes of the brain: electrical potentials, behavior and clinical use. Prog Brain Res 54: 3–15Google Scholar
  8. Caspers H, Speckmann E-J, Lehmenkiihler A (1984) Electrogenesis of slow potentials of the brain. In: Elbert T, Rock- stroh B, Lutzenberger W, Birbaumer N (eds) Self-regulation of the brain and behavior. Springer, Berlin Heidelberg New York Tokyo, pp 26–41CrossRefGoogle Scholar
  9. Chatrian GE, Shaw C-M, Plum F (1964) Focal periodic slow transients in epilepsia partialis continua: clinical and pathological correlations in two cases. Electroencephalogr Clin Neurophysiol 16: 387–393PubMedCrossRefGoogle Scholar
  10. Chatrian GE, Somasundaram M, Tassinari CA (1968) DC changes recorded transcranial during “typical” three per second spike and wave discharges in man. Epilepsia 9: 185–209PubMedCrossRefGoogle Scholar
  11. Cohn R (1954) DC recordings of paroxysmal activity from the intact human head. Electroencephalogr Clin Neurophysiol 6: 692Google Scholar
  12. Cohn R (1963) DC potential variations in paroxysmal dis-charges. Electroencephalogr Clin Neurophysiol 15: 151Google Scholar
  13. Cohn R (1964) DC recordings of paroxysmal disorders in man. Electroencephalogr Clin Neurophysiol 17: 17–24PubMedCrossRefGoogle Scholar
  14. Creutzfeldt OD, Houchin J (1974) Neuronal basis of EEG waves. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 2, part C. Elsevier, Amsterdam, pp 5–55Google Scholar
  15. Creutzfeldt OD, Watanabe S, Lux HD (1966) Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr Clin Neurophysiol 20: 19–37Google Scholar
  16. De Robertis EDP, Carrea R (eds) (1965) Biology of neuroglia. Prog Brain Res, vol 15. Elsevier, AmsterdamGoogle Scholar
  17. Elger CE, Speckmann E-J (1980) Focal interictal epileptiform discharges ( FIED) in the epicortical EEG and their relations to spinal field potentials in the rat. Electroencephalogr Clin Neurophysiol 48: 447–460PubMedCrossRefGoogle Scholar
  18. Elger CE, Speckmann E-J (1983 a) Penicillin induced epileptic foci in the motor cortex: vertical inhibition. Electroencephalogr Clin Neurophysiol 56: 604–622Google Scholar
  19. Elger CE, Speckmann E-J ( 1983 b) Vertical inhibition in motor cortical epileptic foci and its consequences for descending neuronal activity to the spinal cord. In: Speckmann E-J, Elger CE (eds) Epilepsy and motor system. Urban und Schwarzenberg, Mtinchen, pp 152–160Google Scholar
  20. Elger CE, Speckmann E-J, Prohaska O, Caspers H (1981) Pattern of intracortical potential distribution during focal interictal epileptiform discharges ( FIED) and its relation to spinal field potentials in the rat. Electroencephalogr Clin Neurophysiol 51: 393–402PubMedCrossRefGoogle Scholar
  21. Elger CE, Speckmann E-J, Caspers H, Prohaska O (1982) Focal interictal epileptiform discharges in the cortex of the rat: laminar restriction and its consequences for activity descending to the spinal cord. In: Klee MR, Lux HD, Speckmann E-J (eds) Physiology and pharmacology of epileptogenic phenomena. Raven, New York, pp 13–19Google Scholar
  22. Goldensohn ES (1984) Neurophysiologische Grundlagen der EEG-Aktivitat. In: Klass DW, Daly DD (eds) Klinische Elektroenzephalographie. Fischer, Stuttgart, pp 379–395Google Scholar
  23. Goldring S, O’Leary JL (1951) Experimentally derived correlates between ECG and steady cortical potential. J Neuro-physiol 14: 275–288Google Scholar
  24. Goldring S, O’Leary JL (1954) Correlation between steady transcortical potential and evoked response. II. Effect of veratrine and strychnine upon the responsiveness of visual cortex. Electroencephalogr Clin Neurophysiol 6: 201–212PubMedCrossRefGoogle Scholar
  25. Gumnit R (1974) DC shifts accompanying seizure activity. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 10, part A. Elsevier, Amsterdam, pp 66–77Google Scholar
  26. Gumnit RJ, Matsumoto H, Vasconetto C (1970) DC activity in the depth of an experimental epileptic focus. Electroen-cephalogr Clin Neurophysiol 28: 333–339CrossRefGoogle Scholar
  27. Klee MR, Speckmann E-J, Lux HD (eds) (1981) Physiology and pharmacology of epileptogenic phenomena. Raven, New YorkGoogle Scholar
  28. Kostopoulos G, Avoli M, Gloor P (1983) Participation of cortical recurrent inhibition in the genesis of spike and wave discharges in feline generalized penicillin epilepsy. Brain Res 267: 101–112PubMedCrossRefGoogle Scholar
  29. Kuffler SW, Nicholls JG (1966) The physiology of neuroglia cells. Erg Physiol 57: 1–90PubMedGoogle Scholar
  30. Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29: 768–787PubMedGoogle Scholar
  31. Lopes da Silva F, van Rotterdam A (1982) Biophysical aspects of EEG and MEG generation. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Urban and Schwar- zenberg, Baltimore, pp 15–26Google Scholar
  32. O’Leary JL, Goldring S (1964) DC potentials of the brain. Physiol Rev 44: 91–125PubMedGoogle Scholar
  33. Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29: 788–806PubMedGoogle Scholar
  34. Palay SL, Chan-Palay V (1977) General morphology of neurons and neuroglia. In: Kandel ER (ed) Handbook of physiology. The nervous system, vol 1, part 1. American Physiological Society, Bethesda, pp 5–37Google Scholar
  35. Petsche H, Pockberger H, Rappelsberger P (1981) Current source density studies of epileptic phenomena and the morphology of the rabbit’s striate cortex. In: Klee MR, Lux HD, Speckmann E-J (eds) Physiology and pharmacology of epileptogenic phenomena. Raven, New York, pp 53–63Google Scholar
  36. Pockberger H, Petsche H, Rappelsberger P (1983) Intracortical aspects of penicillin-induced seizure patterns in the rabbit’s motor cortex. In: Speckmann E-J, Elger CE (eds) Epilepsy and motor system. Urban und Schwarzenberg, Munchen, pp 161–178Google Scholar
  37. Pockberger H, Rappelsberger P, Petsche H ( 1984 a) Penicillin-induced epileptic phenomena in the rabbit’s neocortex. I. The development of interictal spikes after epicortical application of penicillin. Brain Res 309: 247–260Google Scholar
  38. Pockberger H, Rappelsberger P, Petsche H (1984b) Penicillin- induced epileptic phenomena in the rabbit’s neocortex. II. Laminar specific generation of interictal spikes after the application of penicillin to different cortical depths. Brain Res 309: 261–269PubMedCrossRefGoogle Scholar
  39. Prince DA (1974) Neuronal correlates of epileptiform dis-charges and cortical DC potentials. In: Remond A (ed) Handbook of electroencephalography and clinical neuro-physiology, vol 2, part C. Elsevier, Amsterdam, pp 56–70Google Scholar
  40. Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) (1972) Experimental models of epilepsy. Raven, New YorkGoogle Scholar
  41. Somjen GG (1973) Electrogenesis of sustained potentials. Prog Neurobiol 1: 199–237CrossRefGoogle Scholar
  42. Somjen GG (1975) Electrophysiology of neuroglia. Ann Rev Physiol 37: 163–190CrossRefGoogle Scholar
  43. Somjen GG, Trachtenberg M (1979) Neuroglia as generator of extracellular current. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 21–32Google Scholar
  44. Speckmann E-J (1986) Experimentelle Epilepsieforschung. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  45. Speckmann E-J, Caspers H (1974) The effect of 02- and C02-tensions in the nervous tissue on neuronal activity and DC-potentials. In: Remond A (ed) Handbook of electroencephalography and clinical neurophysiology, vol 2, part C. Elsevier, Amsterdam, pp 71–89Google Scholar
  46. Speckmann E-J, Caspers H (eds) ( 1979 a) Origin of cerebral field potentials. Thieme, StuttgartGoogle Scholar
  47. Speckmann E-J, Caspers H ( 1979 b) Cortical field potentials in relation to neuronal activities in seizure conditions. In: Speckmann E-J, Caspers H (eds) Origin of cerebral field potentials. Thieme, Stuttgart, pp 205–213Google Scholar
  48. Speckmann E-J, Elger CE (1982) Neurophysiological basis of the EEG and of DC potentials. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basic principles, clinical applications and related fields. Urban and Schwarzenberg, Baltimore, pp 1–13Google Scholar
  49. Speckmann E-J, Elger CE (1984) The neurophysiological basis of epileptic activity: a condensed overview. In: Degen R, Niedermeyer E (eds) Epilepsy, sleep and sleep deprivation. Elsevier, Amsterdam, pp 23–34Google Scholar
  50. Speckmann E-J, Caspers H, Janzen RWC (1972) Relations between cortical DC shifts and membrane potential changes of cortical neurons associated with seizure activity. In: Petsche H, Brazier MAB (eds) Synchronization of EEG activity in epilepsies. Springer, Vienna New York, pp 93–111Google Scholar
  51. Speckmann E-J, Caspers H, Janzen RWC (1978) Laminar dis-tribution of cortical field potentials in relation to neuronal activities during seizure discharges. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. IBRO monograph series, vol 3. Raven, New York, pp 191–209Google Scholar
  52. Speckmann E-J, Caspers H, Elger CE (1984) Neuronal mechanisms underlying the generation of field potentials. In: Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N (eds) Self-regulation of the brain and behavior. Springer, Berlin Heidelberg New York Tokyo, pp 9–25CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • E.-J. Speckmann
    • 1
  • J. Walden
    • 1
  1. 1.Department of Experimental Epileptology, Institute of Physiology — NeurophysiologyUniversity of MünsterMünsterFederal Republic of Germany

Personalised recommendations