Skip to main content

Future Trends in Electrode Technology

  • Conference paper
Book cover Presurgical Evaluation of Epileptics
  • 119 Accesses

Abstract

The fabrication of microelectrodes with conventional techniques using glass micropipettes or thin metal wires to record the electrical activity of nerve cells is faced with difficulties in controlling the dimensions and impedance of such electrodes (Frank and Beeker 1964). The same situation is encountered in the conventional fabrication of microelectrodes and mini-electrodes for ion-activity measurements.

This study was supported by the Swiss National Science Foundation and Swiss Foundation for Microtechnology Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnoux C, Kloeck B, Van den Vlekkert H, De Rooij N (1985) Miniaturized silicon sensors for biomedical applications. Actes du 59e congres SSC-ASMT, Interlaken, Switzerland, pp 37–43

    Google Scholar 

  • Bergveld P (1972) Development, operation and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans Biomed Engin BME-19: 342–351

    Google Scholar 

  • Brown R, Huber RJ, Petelenz D, Janata J (1985) An integrated multiple-sensor chemical transducer. Transducers 85. Digest of Technical Papers, pp 125–127

    Google Scholar 

  • De Rooij NF, Haemmerli A, Grisel A (1985) C-MOS compatible pH ISFET with A1203 gate. In: Ko WH (ed) Implantable sensors for closed-loop prosthetic systems. Futura, Mount Risco, pp 139–151

    Google Scholar 

  • Frank K, Beeker MC (1964) Microelectrodes for recording and stimulation. In: Nastuk WL (ed) Physical techniques in biological research, vol 5. Academic, New York

    Google Scholar 

  • Janata J, Huber RJ (1980) Chemically sensitive field effect transistors. In: FreiserH (ed) Ion-selective electrodes in analytical chemistry. Plenum, New York, pp 107–175

    Google Scholar 

  • Kim SJ, Kim M, Heetderks WJ (1985) Laser-induced fabrication of a transsubstrate microelectrode array and neurophysiological performance. IEEE Trans Biomed Engin BME- 32: 497–502

    Article  CAS  Google Scholar 

  • Lauks I, Van der Spiegel J, Sansen W, Steyaert M (1985) Multispecies integrated electrochemical sensor with on-chip CMOS circuitry. Transducers’ 85. Digest of Technical Papers, pp 122–124

    Google Scholar 

  • McKinley BA, Houtchens BA, Janata J (1984) In-vivo application of ISFETs: summary of current laboratory research and probable future clinical detectors. Ion-Selective Electrode Rev 6: 173–208

    Google Scholar 

  • Meier PC, Amman D, Morf WE, Simon W (1980) Liquid-membrane ion-selective electrodes and their biomedical applications. In: Konyta J (ed) Medical and biological applications of electrochemical devices. Wiley, Chichester, pp 13–91

    Google Scholar 

  • Middelhoek S, Noorlag DJW (1978) Silicon micro-transducers: a new generation of measuring elements. In: RegtienPPL (ed) Modern electronic measuring systems. Delft University Press, Delft, pp 1–23

    Google Scholar 

  • Najafi K, Wise KD, Mochitzuki T (1985) A high-yield IC-compatible multichannel recording array. IEEE Trans Electron DevED-32: 1206–1211

    Google Scholar 

  • Sibbald A (1983) Chemical-sensitive field effect transistors. IEEProc 130: 233–244

    CAS  Google Scholar 

  • Smith RL, Scott DC (1984) A solid state miniature reference electrode. Proceedings of the IEEE symposium on biosensors, 61, Sept 15–17, Los Angeles

    Google Scholar 

  • Takahashi K, Matsuo T (1984) Integration of multi-microelectrode and interface circuits by silicon planar and three-dimensional fabrication technology. Sensors Actuators 5: 89–99

    Article  Google Scholar 

  • Wise KD, Angell JB (1975) A low capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans Biomed Engin BME-22: 212–219

    Google Scholar 

  • Wise KD, Angell JB, Starr A (1970) An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Biomed Engin BME-17: 238–246

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Rooij, N.F. (1987). Future Trends in Electrode Technology. In: Wieser, H.G., Elger, C.E. (eds) Presurgical Evaluation of Epileptics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71103-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71103-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71105-3

  • Online ISBN: 978-3-642-71103-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics