Skip to main content

Part of the book series: Progress in Sensory Physiology ((PHYSIOLOGY,volume 7))

  • 159 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas PJ (1978) Effects of stimulus frequency on two-tone suppression: a comparison of physiological and psychophysical results. J Acoust Soc Am 63:1878–1886

    Article  PubMed  CAS  Google Scholar 

  • Abbas PJ, Sachs MB (1976) Two-tone suppression in auditory-nerve fibers: Extension of a stimulus-response relationship. J Acoust Soc Am 59:112–122

    Article  PubMed  CAS  Google Scholar 

  • Adams JC (1976) Single unit studies on the dorsal and intermediate acoustic striae. J Comp Neurol 170:97–106

    Article  PubMed  CAS  Google Scholar 

  • Adams JC (1979) Ascending projections to the inferior colliculus. J Comp Neurol 183:519–538

    Article  PubMed  CAS  Google Scholar 

  • Adams JC (1983 a) Multipolar cells in the ventral cochlear nucleus project to the dorsal cochlear nucleus and the inferior colliculus. Neurosci Lett 37:205–208

    Article  PubMed  CAS  Google Scholar 

  • Adams JC (1983 b) Cytology of periolivary cells and the organization of their projections in the cat. J Comp Neurol 215:275–289

    Article  PubMed  CAS  Google Scholar 

  • Adams JC, Warr WB (1976) Origins of axons in the cat’s acoustic striae determined by injection of horseradish peroxidase into severed tracts. J Comp Neurol 170:107–122

    Article  PubMed  CAS  Google Scholar 

  • Adamük E (1870) Über die Innervation der Augenbewegungen. Zentralbl Med Wiss 8:65–67

    Google Scholar 

  • Aertsen AMH, Smolders JWT, Johannesma PIM (1979) Neural representation of the acoustic biotope: on the existence of stimulus-event relations for sensory neurons. Biol Cybern 32:175–185

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM (1976) Tonotopic organization at higher levels of the auditory pathway. In: Porter R (ed) International review of physiology, Neurophysiology II, vol 10. University Park Press, Baltimore, pp 249–279

    Google Scholar 

  • Aitkin LM (1979) The auditory midbrain. Trends Neurosci 2:308–310

    Article  Google Scholar 

  • Aitkin LM (1983) The pathway for low frequency sound localization in the cat hindbrain. In: Webster WR, Aitkin LM (eds) Mechanisms of hearing. Monash University Press, Clayton, p 100

    Google Scholar 

  • Aitkin LM (1986) The auditory midbrain: Structure and function in the central auditory pathway. Humana, Clifton

    Google Scholar 

  • Aitkin LM, Boyd J (1975) Responses of single units in cerebellar vermis of the cat to monaural and binaural stimuli. J Neurophysiol 38:418–429

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Boyd J (1978) Acoustic input to the lateral pontine nuclei. Hear Res 1:67–77

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Kenyon CE (1981) The auditory brain stem of a marsupial. Brain Behav Evol 19:126–143

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Phillips SC (1984a) Is the inferior colliculus an obligatory relay in the cat auditory system? Neurosci Lett 44:259–264

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Phillips SC (1984b) The interconnections of the inferior colliculi through their commissure. J Comp Neurol 228:210–216

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Schuck DM (1985) Low frequency neurons in the lateral central nucleus of the cat inferior colliculus receive their input predominantly from the medial superior olive. Hear Res 17:87–93

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Anderson DJ, Brugge JF (1970) Tonotopic organization and discharge characteristics of single neurons in nuclei of the lateral lemniscus of the cat. J Neurophysiol 33:421–440

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Fryman S, Blake DW, Webster WR (1972a) Responses of neurones in the rabbit inferior colliculus. I. Frequency-specificity and topographic arrangement. Brain Res 47:77–90

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Blake DW, Fryman S, Bock GR (1972b) Responses of neurones in the rabbit inferior colliculus. II. Influence of binaural tonal stimulation. Brain Res 47:91–101

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Webster WR, Veale JL, Crosby DC (1975) Inferior colliculus. I. Comparison of response properties of neurons in the central, pericentral, and external nuclei of adult cat. J Neurophysiol 38:1196–1207

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Bush BMH, Gates GR (1978 a) The auditory midbrain of a marsupial. The brush-tailed possum (Trichosurus vulpecula). Brain Res 150:29–44

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Dickhaus H, Schult W, Zimmermann M (1978 b) External nucleus of inferior colliculus: auditory and spinal somatosensory afferents and their interactions. J Neurophysiol 41:837–847

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Kenyon CE, Philpott P (1981) The representation of the auditory and somatosensory systems in the external nucleus of the cat inferior colliculus. J Comp Neurol 196:25–40

    Article  PubMed  CAS  Google Scholar 

  • Aitkin LM, Gates GR, Phillips SC (1984 a) Responses of neurons in inferior colliculus to variations in sound-source azimuth. J Neurophysiol 52:1–17

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Irvine DRF, Webster WR (1984b) Central neural mechanisms of hearing. In: Darian-Smith I (ed) Handbook of physiology, section 1: the nervous system, vol 3, sensory processes, chap 16. Am Physiol Soc, Bethesda, pp 675–737

    Google Scholar 

  • Aitkin LM, Pettigrew ID, Calford MB, Phillips SC, Wise LZ (1985) Representation of stimulus azimuth by low-frequency neurons in inferior colliculus of the cat. J Neurophysiol 53:43–59

    PubMed  CAS  Google Scholar 

  • Allman JM, Kaas JH (1974) The organization of the second visual area (VII) in the owl monkey: a second order transformation of the visual hemifield. Brain Res 76:247–265

    Article  PubMed  CAS  Google Scholar 

  • Allon N, Wollberg Z (1978) Responses of cells in the superior colliculus of the squirrel monkey to auditory stimuli. Brain Res 159:321–330

    Article  PubMed  CAS  Google Scholar 

  • Altman JA (1968) Are there neurons detecting direction of sound source motion? Exp Neurol 22:13–25

    Article  PubMed  CAS  Google Scholar 

  • Altman JA (1978) Sound localization — Neurophysiological mechanisms. In: Tonndorf J (ed) Translations of the Beltone Institute for Hearing Research. Beltone Inst Hearing Res, Chicago, no 30

    Google Scholar 

  • Andersen RA, Roth GL, Aitkin LM, Merzenich MM (1980a) The efferent projections of the central nucleus and the pericentral nucleus of the inferior colliculus in the cat. J Comp Neurol 194:649–662

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA, Snyder RL, Merzenich MM (1980b) The tonotopic organization of corti-cocollicular projections from physiologically defined loci in the AI, AII, and anterior auditory cortical fields of the cat. J Comp Neurol 191:479–494

    Article  PubMed  CAS  Google Scholar 

  • Anderson DJ (1973) Quantitative model for the effects of stimulus frequency upon synchronization of auditory nerve discharges. J Acoust Soc Am 54:361–364

    Article  PubMed  CAS  Google Scholar 

  • Anderson DJ, Rose JE, Hind JE, Brugge JF (1971) Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. J Acoust Soc Am 49:1131–1139

    Article  PubMed  Google Scholar 

  • Angell JR, Fite W (1901a) The monaural localization of sound. Psychol Rev 3:225–246

    Article  Google Scholar 

  • Angell JR, Fite W (1901b) Further observations on the monaural localization of sound. Psychol Rev 8:449–458

    Article  Google Scholar 

  • Arnesen AR, Osen KK (1978) The cochlear nerve in the cat: topography, cochleotopy and fiber spectrum. J Comp Neurol 178:661–678

    Article  PubMed  CAS  Google Scholar 

  • Arthur RM (1976) Harmonic analysis of two-tone discharge patterns in cochlear nerve fibers. Biol Cybern 22:21–31

    Article  PubMed  CAS  Google Scholar 

  • Arthur RM, Pfeiffer RR, Suga N (1971) Properties of “two-tone inhibition” in primary auditory neurones. J Physiol (Lond) 212:593–609

    CAS  Google Scholar 

  • Auker CR, Meszler RM, Carpenter DO (1983) Apparent discrepancy between single-unit activity and [14C] deoxyglucose labelling in optic tectum of the rattlesnake. J Neurophysiol 49:1504–1516

    PubMed  CAS  Google Scholar 

  • Batteau DW (1967) The role of the pinna in human localization. Proc R Soc Lond [Biol] Ser B 168:158–180

    Article  CAS  Google Scholar 

  • Behar A (1984) Intensity and sound pressure level. J Acoust Soc Am 76:632

    Article  Google Scholar 

  • Békésy von G (1930) Zur Theorie des Hörens: Über das Richtungshören bei einer Zeitdifferenz oder Lautstärkenungleichheit der beiderseitigen Schalleinwirkungen. Physik Zeits 31:824–835, 857–868. English translation in: Wever EG (ed) (1960) Experiments in hearing. McGraw-Hill, New York, pp 272–301

    Google Scholar 

  • Belendiuk K, Butler RA (1975) Monaural localization of low-pass noise bands in the horizontal plane. J Acoust Soc Am 58:701–705

    Article  PubMed  CAS  Google Scholar 

  • Belendiuk K, Butler RA (1977) Spectral cues which influence monaural localization in the horizontal plane. Percept Psychophysiol 22:353–358

    Article  Google Scholar 

  • Benevento LA, Coleman PD, Loe PR (1970) Responses of single cells in cat inferior colliculus to binaural click stimuli: combinations of intensity levels, time differences and intensity differences. Brain Res 17:387–405

    Article  PubMed  CAS  Google Scholar 

  • Bengry MF, Silverman MS, Clopton BM (1977) Effects of lesioning the dorsal and intermediate acoustic striae on binaural interaction at the inferior colliculus. Exp Brain Res 28:211–219

    Article  PubMed  CAS  Google Scholar 

  • Bergeijk van WA (1962) Variation on a theme of Békésy: a model of binaural interaction. J Acoust Soc Am 34:1431–1437

    Article  Google Scholar 

  • Berman AL (1968) The brainstem of the cat. A cytoarchitectonic atlas with stereotaxic coordinates. University Wisconsin Press, Madison

    Google Scholar 

  • Beyerl BD (1978) Afferent projections to the central nucleus of the inferior colliculus in the rat. Brain Res 145:209–223

    Article  PubMed  CAS  Google Scholar 

  • Blackstad TW, Osen KK, Mugnaini E (1984) Pyramidal neurones of the dorsal cochlear nucleus: a Golgi and computer reconstruction study in cat. Neuroscience 13:827–854

    Article  PubMed  CAS  Google Scholar 

  • Blauert J (1969/1970) Sound localization in the median plane. Acustica 22:205–213

    Google Scholar 

  • Blauert J (1980) Modelling of interaural time and intensity difference discrimination. In: Brink van den G, Bilsen FA (eds) Psychophysical, physiological and behavioural studies in hearing. University Press, Delft, pp 421–424

    Google Scholar 

  • Blauert J (1982) Binaural localization. In: Pederson OJ, Poulsen T (eds) Binaural effects in normal and impaired hearing. Scand Audiol (Suppl) 15:7–26

    Google Scholar 

  • Blauert J (1983) Spatial hearing. MIT, Cambridge

    Google Scholar 

  • Bloom PJ (1977 a) Determination of monaural sensitivity changes due to the pinna by use of minimum-audible-field measurements in the lateral vertical plane. J Acoust Soc Am 61:820–828

    Article  PubMed  CAS  Google Scholar 

  • Bloom PJ (1977 b) Creating source elevation illusions by spectral manipulation. J Audio Eng Soc 25:560–565

    Google Scholar 

  • Bock GR, Webster WR (1974a) Spontaneous activity of single units in the inferior colliculus of anesthetized and unanesthetized cats. Brain Res 76:150–154

    Article  PubMed  CAS  Google Scholar 

  • Bock GR, Webster WR (1974b) Coding of spatial location by single units in the inferior colliculus of the alert cat. Exp Brain Res 21:387–398

    Article  PubMed  CAS  Google Scholar 

  • Bock GR, Webster WR, Aitkin LM (1972) Discharge patterns of single units in inferior colliculus of the alert cat. J Neurophysiol 35:265–277

    PubMed  CAS  Google Scholar 

  • Borg E (1973 a) A neuroanatomical study of the brainstem auditory system of the rabbit. Part 1. Ascending connections. Acta Morphol Need Scand 11:31–48

    CAS  Google Scholar 

  • Borg E (1973 b) On the neuronal organization of the acoustic middle ear reflex. A physiological and anatomical study. Brain Res 49:101–123

    Article  PubMed  CAS  Google Scholar 

  • Borg E, Zakrisson J-E (1975) The stapedius muscle and speech perception. Symp Zool Soc Lond 37:51–68

    Google Scholar 

  • Bothe S J, Elfner LF (1972) Monaural vs binaural auditory localization for noise bursts in the median vertical plane. J Aud Res 12:291–296

    Google Scholar 

  • Boudreau JC, Tsuchitani C (1968) Binaural interaction in the cat superior olive S segment. J Neurophysiol 31:442–454

    PubMed  CAS  Google Scholar 

  • Boudreau JC, Tsuchitani C (1970) Cat superior olive S-segment cell discharge to tonal stimulation. In: Neff WD (ed) Contributions to sensory physiology, vol 4. Academic, New York, pp 143–213

    Google Scholar 

  • Bourk TR (1976) Electrical responses of neural units in the anteroventral cochlear nucleus of the cat. PhD Thesis, MIT, Cambridge

    Google Scholar 

  • Bourk TR (1977) Phase-locking in AVCN units of cat. J Acoust Soc Am 61: Suppl 1:S59

    Article  Google Scholar 

  • Bourk TR, Mielcarz JP, Norris BE (1981) Tonotopic organization of the anteroventral cochlear nucleus of the cat. Hear Res 4:215–241

    Article  PubMed  CAS  Google Scholar 

  • Boyd J, Aitkin LM (1976) Responses of single units in the pontine nuclei of the cat to acoustic stimulation. Neurosci Lett 3:259–263

    Article  PubMed  CAS  Google Scholar 

  • Brawer JR, Morest DK (1975) Relations between auditory nerve endings and cell types in the cat’s anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. J Comp Neurol 160:491–506

    Article  PubMed  CAS  Google Scholar 

  • Brawer JR, Morest DK, Kane EC (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 155:251–299

    Article  PubMed  CAS  Google Scholar 

  • Bregman AS (1978) The formation of auditory streams. In: Requin J (ed) Attention and performance, vol 7. Erlbaum, Hillsdale, pp 63–75

    Google Scholar 

  • Britt RH (1976) Intracellular study of synaptic events related to phase-locking responses of cat cochlear nucleus cells to low frequency tones. Brain Res 112:313–327

    Article  PubMed  CAS  Google Scholar 

  • Britt R, Starr A (1976a) Synaptic events and discharge patterns of cochlear nucleus cells. I. Steady-frequency tone bursts. J Neurophysiol 39:162–178

    PubMed  CAS  Google Scholar 

  • Britt R, Starr A (1976b) Synaptic events and discharge patterns of cochlear nucleus cells. II. Frequency-modulated tones. J Neurophysiol 39:179–194

    PubMed  CAS  Google Scholar 

  • Britt RH, Rossi GT, Morest DK (1983) Intracellular studies in cat cochlear nucleus: correlation of physiological responses and morphology of intracellularly labelled cat cochlear nucleus neurons. In: Webster WR, Aitkin LM (eds) Mechanisms of hearing. Monash University Press, Clayton, p 125

    Google Scholar 

  • Brodai A (1981) Neurological anatomy in relation to clinical medicine (3rd ed). Oxford University Press, Oxford

    Google Scholar 

  • Brown CH (1982) Primate auditory localization. In: Gatehouse RW (ed) Localization of sound: theory and applications. Amphora, Groton, pp 136–154

    Google Scholar 

  • Brown CH, Beecher MD, Moody DB, Stebbins WC (1978) Localization of pure tones by Old World monkeys. J Acoust Soc Am 63:1484–1492

    Article  Google Scholar 

  • Brown CH, Beecher MD, Moody DB, Stebbins WC (1980) Localization of noise bands by Old World monkeys. J Acoust Soc Am 68:127–132

    Article  PubMed  CAS  Google Scholar 

  • Brown CH, Schessler T, Moody D, Stebbins W (1982) Vertical and horizontal sound localization in primates. J Acoust Soc Am 72:1804–1811

    Article  PubMed  CAS  Google Scholar 

  • Brown MC, Nuttall AL (1984) Efferent control of cochlear inner hair cell responses in the guinea-pig. J Physiol (Lond) 354:625–646

    CAS  Google Scholar 

  • Brownell WE (1975) Organization of the cat trapezoid body and the discharge characteristics of its fibers. Brain Res 94:413–433

    Article  PubMed  CAS  Google Scholar 

  • Brownell WE (1982) Cochlear transduction: an integrative model and review. Hear Res 6:335–360

    Article  PubMed  CAS  Google Scholar 

  • Brownell WE (1983) Observations on a motile response in isolated outer hair cells. In: Webster WR, Aitkin LM (eds) Mechanisms of hearing. Monash University Press, Clayton, pp 5–10

    Google Scholar 

  • Brownell WE, Manis PB, Ritz LA (1979) Ipsilateral inhibitory responses in the cat lateral superior olive. Brain Res 177:189–193

    Article  PubMed  CAS  Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196

    Article  PubMed  CAS  Google Scholar 

  • Browner RH, Webster DB (1975) Projections of the trapezoid body and the superior olivary complex of the kangaroo rat (Dipodomys merriami). Brain Behav Evol 11:322–354

    Article  PubMed  CAS  Google Scholar 

  • Browner RH, Baruch A (1982) The cytoarchitecture of the dorsal cochlear nucleus in the 3-month- and 26-month-old C57BL/6 mouse: a Golgi impregnation study. J Comp Neurol 211:115–138

    Article  PubMed  CAS  Google Scholar 

  • Brugge JF, Geisler CD (1978) Auditory mechanisms of the lower brain stem. Annu Rev Neurosci 1:363–394

    Article  PubMed  CAS  Google Scholar 

  • Brugge JF, Merzenich MM (1973) Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. J Neurophysiol 36:1138–1158

    PubMed  CAS  Google Scholar 

  • Brugge JF, Anderson DJ, Hind JE, Rose JE (1969) Time structure of discharges in single auditory nerve fibers of the squirrel monkey in response to complex periodic sounds. J Neurophysiol 32:386–401

    PubMed  CAS  Google Scholar 

  • Brugge JF, Anderson DJ, Aitkin LM (1970) Responses of neurons in the dorsal nucleus of the lateral lemniscus of cat to binaural tonal stimulation. J Neurophysiol 33:441–458

    PubMed  CAS  Google Scholar 

  • Brunso-Bechtold JK, Thompson GC, Masterton RB (1981) HRP study of the organization of auditory afferents ascending to central nucleus of inferior colliculus in cat. J Comp Neurol 197:705–722

    Article  PubMed  CAS  Google Scholar 

  • Buskirk RL van (1983) Subcortical auditory and somatosensory afferents to hamster superior colliculus. Brain Res Bull 10:583–587

    Article  PubMed  Google Scholar 

  • Butler RA (1969) Monaural and binaural localization of noise bursts vertically in the median sagittal plane. J Aud Res 9:230–235

    Google Scholar 

  • Butler RA (1971) The monaural localization of tonal stimuli. Percept Psychophys 9:99–101

    Article  Google Scholar 

  • Butler RA (1975) The influence of the external and middle ear on auditory discriminations. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology, vol V. Auditory system, part 2. Springer, Berlin Heidelberg New York, pp 247–260

    Google Scholar 

  • Butler RA, Belendiuk K (1977) Spectral cues utilized in the localization of sound in the median sagittal plane. J Acoust Soc Am 61:1264–1269

    Article  PubMed  CAS  Google Scholar 

  • Butler RA, Planert N (1976) The influence of stimulus bandwidth on localization of sound in space. Percept Psychophys 19:103–108

    Article  Google Scholar 

  • Butler RA, Diamond IT, Neff WD (1957) Role of auditory cortex in discrimination of changes of frequency. J Neurophysiol 20:108–120

    PubMed  CAS  Google Scholar 

  • Caird D, Klinke R (1983) Processing of binaural stimuli by cat superior olivary complex neurons. Exp Brain Res 52:385–399

    Article  PubMed  CAS  Google Scholar 

  • Caird D, Gottl K-H, Klinke R (1980) Interaural attenuation in the cat, measured with single fibre data. Hear Res 3:257–263

    Article  PubMed  CAS  Google Scholar 

  • Calford MB (1983) The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. J Neurosci 3:2350–2364

    PubMed  CAS  Google Scholar 

  • Calford MB, Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through the thalamus. J Neurosci 3:2365–2380

    PubMed  CAS  Google Scholar 

  • Calford MB, Pettigrew JD (1984) Frequency dependence of directional amplification at the cat’s pinna. Hear Res 14:13–19

    Article  PubMed  CAS  Google Scholar 

  • Calford MB, Webster WR, Semple MN (1983) Measurement of frequency selectivity of single neurons in the central auditory pathway. Hear Res 11:395–401

    Article  PubMed  CAS  Google Scholar 

  • Calford MB, Moore DR, Hutchings ME (1986) Central and peripheral contributions to the coding of acoustic space by neurons in the inferior colliculus of the cat. J Neurophysiol 55:587–603

    PubMed  CAS  Google Scholar 

  • Campbell CBG, Hodos W (1970) The concept of homology and the evolution of the nervous system. Brain Behav Evol 3:353–367

    Article  PubMed  CAS  Google Scholar 

  • Cant NB (1981) The fine structure of two types of stellate cells in the anterior division of the anteroventral cochlear nucleus of the cat. Neuroscience 6:2643–2655

    Article  PubMed  CAS  Google Scholar 

  • Cant NB (1982) Identification of cell types in the anteroventral cochlear nucleus that project to the inferior colliculus. Neurosci Lett 32:241–246

    Article  PubMed  CAS  Google Scholar 

  • Cant NB (1984) The fine structure of the lateral superior olivary nucleus of the cat. J Comp Neurol 227:63–77

    Article  PubMed  CAS  Google Scholar 

  • Cant NB, Gaston KC (1982) Pathways connecting the right and left cochlear nuclei. J Comp Neurol 212:313–326

    Article  PubMed  CAS  Google Scholar 

  • Cant NB, Morest DK (1978) Axons from non-cochlear sources in the anteroventral cochlear nucleus of the cat. A study with the rapid Golgi method. Neuroscience 3:1003–1029

    Article  PubMed  CAS  Google Scholar 

  • Cant NB, Morest DK (1979a) Organization of the neurons in the anterior division of the anteroventral cochlear nucleus of the cat. Light-microscopic observations. Neuroscience 4:1909–1923

    Article  PubMed  CAS  Google Scholar 

  • Cant NB, Morest DK (1979b) The bushy cells in the anteroventral cochlear nucleus of the cat. A study with the electron microscope. Neuroscience 4:1925–1945

    Article  PubMed  CAS  Google Scholar 

  • Carlyon RP, Moore BCJ (1984) Intensity discrimination: a severe departure from Weber’s law. J Acoust Soc Am 76:1369–1376

    Article  PubMed  CAS  Google Scholar 

  • Carpenter MB, Batton RB III, Peter P (1978) Transport of radioactivity from primary auditory neurons beyond the cochlear nuclei. J Comp Neurol 179:517–534

    Article  PubMed  CAS  Google Scholar 

  • Carson KA, Mesulam MM (1982) Electron microscopic tracing of neural connections with horseradish peroxidase. In: Mesulam MM (ed) Tracing neural connections with horseradish peroxidase. Wiley, Chichester, pp 153–184

    Google Scholar 

  • Casagrande VA, Diamond IT (1974) Ablation study of the superior colliculus in the tree shrew (Tupaia glis). J Comp Neurol 156:207–238

    Article  PubMed  CAS  Google Scholar 

  • Caspary D (1972) Classification of subpopulations of neurons in the cochlear nuclei of the kangaroo rat. Exp Neurol 37:131–151

    Article  PubMed  CAS  Google Scholar 

  • Casseday JH, Neff WD (1973) Localization of pure tones. J Acoust Soc Am 54:365–372

    Article  PubMed  CAS  Google Scholar 

  • Casseday JH, Neff WD (1975) Auditory localization: role of auditory pathways in brainstem of the cat. J Neurophysiol 38:842–858

    PubMed  CAS  Google Scholar 

  • Casseday JH, Jones DR, Diamond IT (1979) Projections from cortex to tectum in the tree shrew, Tupaia glis. J Comp Neurol 185:253–292

    Article  PubMed  CAS  Google Scholar 

  • Chalupa LM, Rhoades RW (1977) Responses of visual, somatosensory, and auditory neurones in the golden hamster’s superior colliculus. J Physiol (Lond) 270:595–626

    CAS  Google Scholar 

  • Chan JC, Yin TCT (1982) Topographical relationships along the isofrequency laminae of the cat inferior colliculus: correlation with the anatomical lamination and representation of binaural response properties. Soc Neurosci Abstr 8:348

    Google Scholar 

  • Chan JCK, Verro P, Yin TCT (1985) Cross-correlation of binaural acoustic signals in the inferior colliculus of the cat. Assoc Res Otolaryngol 8:31

    Google Scholar 

  • Clarey JC, Irvine DRF (1986) Auditory response properties of neurons in the anterior ecto-sylvian sulcus in the cat. Brain Res (in press)

    Google Scholar 

  • Clark GM (1969) The ultrastructure of nerve endings in the medial superior olive of the cat. Brain Res 14:293–305

    Article  PubMed  CAS  Google Scholar 

  • Clemo HR, Stein BE (1983) Organization of a fourth somatosensory area of cortex in cat. J Neurophysiol 50:910–925

    PubMed  CAS  Google Scholar 

  • Clopton BM, Winfield JA (1973) Tonotopic organization in the inferior colliculus of the rat. Brain Res 56:355–358

    Article  PubMed  CAS  Google Scholar 

  • Clopton BM, Winfield JA, Flammino FJ (1974) Tonotopic organization: review and analysis. Brain Res 76:1–20

    Article  PubMed  CAS  Google Scholar 

  • Cohen ES, Brawer JR, Morest DK (1972) Projections of the cochlea to the dorsal cochlear nucleus in the cat. Exp Neurol 35:470–479

    Article  PubMed  CAS  Google Scholar 

  • Colburn HS (1973) Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination. J Acoust Soc Am 54:1458–1470

    Article  PubMed  CAS  Google Scholar 

  • Colburn HS, Durlach NI (1978) Models of binaural interaction. In: Carterette EC, Friedman MP (eds) Handbook of perception, vol 4. Academic, New York, pp 467–518

    Google Scholar 

  • Colburn HS, Latimer JS (1978) Theory of binaural interaction based on auditory-nerve data. III. Joint dependence on interaural time and amplitude differences in discrimination and detection. J Acoust Soc Am 64:95–106

    Article  PubMed  CAS  Google Scholar 

  • Colburn HS, Moss PJ (1981) Binaural interaction models and mechanisms. In: Syka J, Aitkin L (eds) Neuronal mechanisms of hearing. Plenum, New York, pp 283–288

    Google Scholar 

  • Coleman PD (1962) Failure to localize the source distance of an unfamiliar sound. J Acoust Soc Am 34:345–346

    Article  Google Scholar 

  • Coleman PD (1963) An analysis of cues to auditory depth perception in free space. Psychol Bull 60:302–315

    Article  PubMed  CAS  Google Scholar 

  • Coles RB, Aitkin LM (1979) The response properties of auditory neurones in the midbrain of the domestic fowl (Gallus gallus) to monaural and binaural stimuli. J Comp Physiol A 134:241–251

    Article  Google Scholar 

  • Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9:268–287

    Article  PubMed  CAS  Google Scholar 

  • Colonnier M (1981) The electron-microscopic analysis of the neuronal organization of the cerebral cortex. In: Schmitt FO, Worden FG, Adelman G, Dennis SG (eds) The organization of the cerebral cortex. MIT, Cambridge, pp 125–152

    Google Scholar 

  • Comis SD (1970) Centrifugal inhibitory processes affecting neurones in the cat cochlear nucleus. J Physiol (Lond) 210:751–760

    CAS  Google Scholar 

  • Comis SD, Whitfield IC (1968) Influence of centrifugal pathways on unit activity in the cochlear nucleus. J Neurophysiol 31:62–68

    PubMed  CAS  Google Scholar 

  • Conlee JW, Kane ES (1982) Descending projections from the inferior colliculus to the dorsal cochlear nucleus in the cat: an autoradiographic study. Neuroscience 7:161–178

    Article  PubMed  CAS  Google Scholar 

  • Costalupes JA, Young ED, Gibson DJ (1984) Effects of continuous noise backgrounds on rate response of auditory nerve fibers in cat. J Neurophysiol 51:1326–1344

    PubMed  CAS  Google Scholar 

  • Crommelinck M, Guitton D, Roucoux A (1977) Retinotopic versus spatial coding of sac-cades: clues obtained by stimulating deep layers of cat’s superior colliculus. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Developments in neuroscience. Vol 1. Elsevier, Amsterdam, pp 425–435

    Google Scholar 

  • Crow G, Rupert AL, Moushegian G (1978) Phase locking in monaural and binaural medullary neurons: implications for binaural phenomena. J Acoust Soc Am 64:493–501

    Article  PubMed  CAS  Google Scholar 

  • Crow G, Langford TL, Moushegian G (1980) Coding of interaural time differences by some high-frequency neurons of the inferior colliculus: responses to noise bands and two-tone complexes. Hear Res 3:147–153

    Article  Google Scholar 

  • Czihak E, Santibáñez-K M, Klimann M, Santibáñez-H G (1983) Audio-visual targeting reaction after unilateral lesions of the superior colliculus in cats. Acta Neurobiol Exp (Warsz) 43:15–25

    CAS  Google Scholar 

  • Dallos P (1973) The auditory periphery. Biophysics and physiology. Academic, New York

    Google Scholar 

  • Dallos P (1981) Cochlear physiology. Annu Rev Psychol 32:153–190

    Article  PubMed  CAS  Google Scholar 

  • Dallos P, Harris D (1978) Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 41:365–383

    PubMed  CAS  Google Scholar 

  • Davis M, Gendelman DS, Tischler MD, Gendelman PM (1982) A primary acoustic startle circuit: lesion and stimulation studies. J Neurosci 2:791–805

    PubMed  CAS  Google Scholar 

  • Deatherage BH, Hirsh IJ (1959) Auditory localization of clicks. J Acoust Soc Am 31:486–492

    Article  Google Scholar 

  • Delgutte B (1980) Representation of speech-like sounds in the discharge patterns of auditory-nerve fibers. J Acoust Soc Am 68:843–857

    Article  PubMed  CAS  Google Scholar 

  • Delgutte B (1984) Speech coding in the auditory nerve: II. Processing schemes for vowellike sounds. J Acoust Soc Am 75:879–886

    Article  PubMed  CAS  Google Scholar 

  • Delgutte B, Kiang NYS (1984a) Speech coding in the auditory nerve: I. Vowel-like sounds. J Acoust Soc Am 75:866–878

    Article  PubMed  CAS  Google Scholar 

  • Delgutte B, Kiang NYS (1984b) Speech coding in the auditory nerve: III. Voiceless fricative consonants. J Acoust Soc Am 75:887–896

    Article  PubMed  CAS  Google Scholar 

  • Delgutte B, Kiang NYS (1984c) Speech coding in the auditory nerve: IV. Sounds with consonant-like dynamic characteristics. J Acoust Soc Am 75:897–907

    Article  PubMed  CAS  Google Scholar 

  • Delgutte B, Kiang NYS (1984d) Speech coding in the auditory nerve: V. Vowels in background noise. J Acoust Soc Am 75:908–918

    Article  PubMed  CAS  Google Scholar 

  • Diamond IT, Jones EG, Powell TPS (1969) The projection of the auditory cortex upon the diencephalon and brain stem of the cat. Brain Res 15:305–340

    Article  PubMed  CAS  Google Scholar 

  • Disterhoft JF, Perkins RE, Evans S (1980) Neuronal morphology of the rabbit cochlear nucleus. J Comp Neurol 192:687–702

    Article  PubMed  CAS  Google Scholar 

  • Domnitz R (1973) The interaural time jnd as a simultaneous function of interaural time and interaural amplitude. J Acoust Soc Am 53:1549–1552

    Article  PubMed  CAS  Google Scholar 

  • Domnitz RH, Colburn HS (1977) Lateral position and interaural discrimination. J Acoust Soc Am 61:1586–1598

    Article  PubMed  CAS  Google Scholar 

  • Don M, Starr A (1972) Lateralization performance of squirrel monkey (Saimirí sciureus) to binaural click signals. J Neurophysiol 35:493–500

    PubMed  CAS  Google Scholar 

  • Dräger UC, Hubel DH (1975 a) Physiology of visual cells in mouse superior colliculus and correlation with somatosensory and auditory input. Nature 253:203–204

    Article  PubMed  Google Scholar 

  • Dräger UC, Hubel DH (1975 b) Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J Neurophysiol 38:690–713

    PubMed  Google Scholar 

  • Druga R, Syka J (1984a) Ascending and descending projections to the inferior colliculus in the rat. Physiol Bohemoslov 33:31–42

    Article  PubMed  CAS  Google Scholar 

  • Druga R, Syka J (1984b) Neocortical projections to the inferior colliculus in the rat. (An experimental study using anterograde degeneration techniques). Physiol Bohemoslov 33:251–253

    PubMed  CAS  Google Scholar 

  • Druga R, Syka J (1984c) Projections from auditory structures to the superior colliculus in the rat. Neurosci Lett 45:247–252

    Article  PubMed  CAS  Google Scholar 

  • Durlach NI, Colburn HS (1978) Binaural phenomena. In: Carterette EC, Friedman MP (eds) Handbook of perception, vol IV. Academic, New York, pp 365–466

    Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Springer, Berlin Göttingen Heidelberg New York

    Book  Google Scholar 

  • Edwards SB (1980) The deep cell layers of the superior colliculus: their reticular characteristics and structural organization. In: Hobson JA, Brazier MAB (eds) The reticular formation revisited. Raven, New York, pp 193–209

    Google Scholar 

  • Edwards SB, Henkel CK (1978) Superior colliculus connections with the extraocular motor nuclei in the cat. J Comp Neurol 179:451–468

    Article  PubMed  CAS  Google Scholar 

  • Edwards SB, Ginsburgh CL, Henkel CK, Stein BE (1979) Sources of subcortical projections to the superior colliculus in the cat. J Comp Neurol 184:309–329

    Article  PubMed  CAS  Google Scholar 

  • Elverland HH (1977) Descending connections between the superior olivary and cochlear nucleus complexes in the cat studied by autoradiographic and horseradish peroxidase methods. Exp Brain Res 27:397–412

    Article  PubMed  CAS  Google Scholar 

  • Elverland HH (1978) Ascending and intrinsic projections of the superior olivary complex in the cat. Exp Brain Res 32:117–134

    Article  PubMed  CAS  Google Scholar 

  • Emmerich DS, Brown WS, Fantini DA, Navarro NC (1983) Frequency discrimination and signal detection in band-reject noise. J Acoust Soc Am 74:1702–1708

    Article  PubMed  CAS  Google Scholar 

  • Erulkar SD (1959) The responses of single units of the inferior colliculus of the cat to acoustic stimulation. Proc R Soc Lond [Biol] Ser B 150:336–355

    Article  CAS  Google Scholar 

  • Erulkar SD (1972) Comparative aspects of spatial localization of sound. Physiol Rev 52:237–360

    PubMed  CAS  Google Scholar 

  • Erulkar SD (1975) Physiological studies of the inferior colliculus and medial geniculate complex. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology, vol V. Auditory system, part 2. Springer, Berlin Heidelberg New York, pp 145–198

    Google Scholar 

  • Erulkar SD, Butler RA, Gerstein GL (1968a) Excitation and inhibition in cochlear nucleus. II. Frequency-modulated tones. J Neurophysiol 31:537–548

    PubMed  CAS  Google Scholar 

  • Erulkar SD, Nelson PG, Bryan JS (1968b) Experimental and theoretical approaches to neural processing in the central auditory pathway. In: Neff WD (ed) Contributions to sensory physiology, vol 3. Academic, New York, pp 149–189

    Google Scholar 

  • Evans EF (1974) Neural processes for the detection of acoustic patterns and for sound localization. In: Schmitt FO, Worden FG (eds) The neurosciences — third study program. MIT, Cambridge, pp 131–145

    Google Scholar 

  • Evans EF (1975) Cochlear nerve and cochlear nucleus. In: Keidel WD, Neff WD (eds). Handbook of sensory physiology, vol V. Auditory system, part 2. Springer, Berlin Heidelberg New York, pp 1–108

    Google Scholar 

  • Evans EF (1978) Place and time coding of frequency in the peripheral auditory system: some physiological pros and cons. Audiology 17:369–420

    Article  PubMed  CAS  Google Scholar 

  • Evans EF (1980) “Phase-locking” of cochlear fibres and the problem of dynamic range. In: Van den Brink G, Bilsen FA (eds) Psychophysical, physiological and behavioural studies in hearing. Delft University Press, Delft, pp 300–309

    Google Scholar 

  • Evans EF (1981) The dynamic range problem: place and time coding at the level of the cochlear nerve and nucleus. In: Syka J, Aitkin L (eds) Neuronal mechanisms of hearing. Plenum, New York, pp 69–85

    Google Scholar 

  • Evans EF (1983) Theoretical and pragmatic approaches to coding for cochlear implant prostheses. In: Webster WR, Aitkin LM (eds) Mechanisms of hearing. Monash University Press, Clayton, pp 168–172

    Google Scholar 

  • Evans EF, Nelson PG (1973 a) The responses of single neurons in the cochlear nucleus of the cat as a function of their location and anaesthetic state. Exp Brain Res 17:402–427

    PubMed  CAS  Google Scholar 

  • Evans EF, Nelson PG (1973 b) On the functional relationship between the dorsal and ventral divisions of the cochlear nucleus of the cat. Exp Brain Res 17:428–442

    PubMed  CAS  Google Scholar 

  • Evans EF, Palmer AR (1980) Relationship between the dynamic range of cochlear nerve fibres and their spontaneous activity. Exp Brain Res 40:115–118

    Article  PubMed  CAS  Google Scholar 

  • Faye-Lund H, Osen KK (1985) Anatomy of the inferior colliculus in rat. Anat Embryol (Berl) 171:1–20

    Article  CAS  Google Scholar 

  • Fekete DM, Rouiller EM, Liberman MC, Ryugo DK (1984) The central projections of in-tracellularly labeled auditory nerve fibers in cats. J Comp Neurol 229:432–450

    Article  PubMed  CAS  Google Scholar 

  • Feng AS, Capranica RR (1978) Sound localization in Anurans. II. Binaural interaction in superior olivary nucleus of the green tree fog (Hyla cinerea). J Neurophysiol 41:43–54

    PubMed  CAS  Google Scholar 

  • Feng AS, Vater M (1985) Functional organization of the cochlear nucleus of rufous horseshoe bats (Rhinolophus rouxi): frequencies and internal connections are arranged in slabs. J Comp Neurol 235:529–554

    Article  PubMed  CAS  Google Scholar 

  • Fernald RD, Gerstein GL (1972) Response of cat cochlear nucleus neurons to frequency and amplitude modulated tones. Brain Res 45:417–435

    Article  PubMed  CAS  Google Scholar 

  • Fernandez C, Karapas F (1967) The course and termination of the striae of Monakow and Held in the cat. J Comp Neurol 131:371–386

    Article  Google Scholar 

  • Ferster D (1981) A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex. J Physiol (Lond) 311:623–655

    CAS  Google Scholar 

  • Fitzpatrick KA (1975) Cellular architecture and topographic organization of the inferior colliculus of the squirrel monkey. J Comp Neurol 164:185–208

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick KA, Imig TJ (1978) Projections of auditory cortex upon the thalamus and midbrain in the owl monkey. J Comp Neurol 177:537–556

    Article  Google Scholar 

  • Flammino F, Clopton BM (1975) Neural responses in the inferior colliculus of albino rat to binaural stimuli. J Acoust Soc Am 57:692–695

    Article  PubMed  CAS  Google Scholar 

  • Flynn WE, Elliott DN (1965) Role of the pinna in hearing. J Acoust Soc Am 38:104–105

    Article  PubMed  CAS  Google Scholar 

  • Freedman SJ, Fisher HG (1968) The role of the pinna in auditory localization. In: Freedman SJ (ed) The neuropsychology of spatially oriented behavior. Dorsey, Homewood, pp 135–152

    Google Scholar 

  • Fuzessery ZM, Pollak GD (1984) Neural mechanisms of sound localization in an echolo-cating bat. Science 225:725–728

    Article  PubMed  CAS  Google Scholar 

  • Galambos R, Schwartzkopff J, Rupert A (1959) Microelectrode study of superior olivary nuclei. Am J Physiol 197:527–536

    PubMed  CAS  Google Scholar 

  • Gardner MB (1969) Lateral localization of 0°- or near-0°-oriented speech signals in an-echoic space. J Acoust Soc Am 44:797–802

    Article  Google Scholar 

  • Gardner MB (1973) Some monaural and binaural facets of median plane localization. J Acoust Soc Am 54:1489–1495

    Article  PubMed  CAS  Google Scholar 

  • Gardner MB, Gardner RS (1973) Problem of localization in the median plane: effect of pinnae cavity occlusion. J Acoust Soc Am 53:400–408

    Article  PubMed  CAS  Google Scholar 

  • Geisler CD, Sinex DG (1980) Responses of primary auditory fibers to combined noise and tonal stimuli. Hear Res 3:317–334

    Article  PubMed  CAS  Google Scholar 

  • Geisler CD, Rhode WS, Hazelton DW (1969) Responses of inferior colliculus neurons in the cat to binaural acoustic stimuli having wide-band spectra. J Neurophysiol 32:960–974

    PubMed  CAS  Google Scholar 

  • Geisler CD, Deng L, Greenberg S (1985) Thresholds for primary auditory fibers using statistically defined criteria. J Acoust Soc Am 77:1102–1109

    Article  PubMed  CAS  Google Scholar 

  • Geniec P, Morest DK (1971) The neuronal architecture of the human posterior colliculus: a study with the Golgi method. Acta Otolaryngol (Stockh) Suppl 295:1–33

    CAS  Google Scholar 

  • Gerstein GL, Butler RA, Erulkar SD (1968) Excitation and inhibition in cochlear nucleus. I. Tone-burst stimulation. J Neurophysiol 31:526–536

    PubMed  CAS  Google Scholar 

  • Gibson DJ (1982) Interaural crosstalk in the cat. Hear Res 7:325–333

    Article  PubMed  CAS  Google Scholar 

  • Gisbergen van JAM, Grashuis JL, Johannesma PIM, Vendrik AJH (1975 a) Spectral and temporal characteristics of activation and suppression of units in the cochlear nuclei of the anaesthetized cat. Exp Brain Res 23:367–386

    PubMed  Google Scholar 

  • Gisbergen van JAM, Grashuis JL, Johannesma PIM, Vendrik AJH (1975 b) Neurons in the cochlear nucleus investigated with tone and noise stimuli. Exp Brain Res 23:387–406

    PubMed  Google Scholar 

  • Gisbergen van JAM, Grashuis JL, Johannesma PIM, Vendrik AJH (1975 c) Statistical analysis and interpretation of the initial response of cochlear nucleus neurons to tone bursts. Exp Brain Res 23:407–423

    PubMed  Google Scholar 

  • Glattke TJ (1969) Unit responses of the cat cochlear nucleus to amplitude-modulated stimuli. J Acoust Soc Am 45:419–425

    Article  PubMed  CAS  Google Scholar 

  • Glendenning KK, Masterton RB (1983) Acoustic chiasm: efferent projections of the lateral superior olive. J Neurosci 3:1521–1537

    PubMed  CAS  Google Scholar 

  • Glendenning KK, Brunso-Bechtold JK, Thompson GC, Masterton RB (1981) Ascending auditory afferents to the nuclei of the lateral lemniscus. J Comp Neurol 197:673–703

    Article  PubMed  CAS  Google Scholar 

  • Glendenning KK, Hutson KA, Nudo RJ, Masterton RB (1985) Acoustic chiasm II: anatomical basis of binaurality in lateral superior olive of cat. J Comp Neurol 232: 261–285

    Article  PubMed  CAS  Google Scholar 

  • Godfrey DA, Kiang NYS, Norris BE (1975 a) Single unit activity in the posteroventral cochlear nucleus of the cat. J Comp Neurol 162:247–268

    Article  PubMed  CAS  Google Scholar 

  • Godfrey DA, Kiang NYS, Norris BE (1975 b) Single unit activity in the dorsal cochlear nucleus of the cat. J Comp Neurol 162:269–284

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM (1975) Physiological studies of the auditory nuclei of the pons. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology, vol V. Auditory system, part 2. Springer, Berlin Heidelberg, New York, pp 109–144

    Google Scholar 

  • Goldberg JM, Brown PB (1968) Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. J Neurophysiol 31:639–656

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brownell WE (1973) Discharge characteristics of neurons in anteroventral and dorsal cochlear nuclei of cat. Brain Res 64:35–54

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM, Greenwood DD (1966) Response of neurons of the dorsal and posteroventral cochlear nuclei of the cat to acoustic stimuli of long duration. J Neurophysiol 29:72–93

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Moore RY (1967) Ascending projections of the lateral lemniscus in the cat and monkey. J Comp Neurol 129:143–156

    Article  Google Scholar 

  • Goldberg JM, Neff WD (1961 a) Frequency discrimination after bilateral ablation of cortical auditory areas. J Neurophysiol 24:119–128

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Neff WD (1961b) Frequency discrimination after bilateral section of the brachium of the inferior colliculus. J Comp Neurol 116:265–290

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM, Smith FD, Adrian HO (1963) Response of single units of superior olivary complex of the cat to acoustic stimuli: laterality of afferent projections. Anat Rec 145:232

    Google Scholar 

  • Goldberg ME, Robinson DL (1978) Visual system: superior colliculus. In: Masterton RB (ed) Handbook of behavioural neurobiology, vol I. Sensory integration. Plenum, New York, pp 119–184

    Google Scholar 

  • Goldstein JL (1978) Mechanisms of signal analysis and pattern perception in periodicity pitch. Audiology 17:421–445

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL (1980) On the signal processing potential of high threshold auditory nerve fibers. In: van den Brink G, Bilsen FA (eds) Psychophysical, physiological and behavioral studies in hearing. Delft University Press, Delft, pp 293–299

    Google Scholar 

  • Goldstein JL, Srulovicz P (1977) Auditory-nerve spike intervals as an adequate basis for aural frequency measurement. In: Evans EF, Wilson JP (eds) Psychophysics and physiology of hearing. Academic, New York, pp 337–346

    Google Scholar 

  • Gordon B (1973) Receptive fields in deep layers of cat superior colliculus. J Neurophysiol 36:157–178

    PubMed  CAS  Google Scholar 

  • Gordon B (1975) Superior colliculus: structure, physiology and possible functions. In: Hunt CC (ed) Physiology, ser 1, vol 3: Neurophysiology. Butterworths, London, pp 185–230

    Google Scholar 

  • Gottlieb DI, Cowan WM (1972) On the distribution of axonal terminals containing spheroidal and flattened synaptic vesicles in the hippocampus and dentate gyrus of the cat and rat. Z Zellforsch Mikrosk Anat 129:413–429

    Article  PubMed  CAS  Google Scholar 

  • Gourevitch G (1980) Directional hearing in terrestrial mammals. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. Springer, Berlin Heidelberg New York, pp 357–373

    Chapter  Google Scholar 

  • Graham J (1977) An autoradiographic study of the efferent connections of the superior colliculus in the cat. J Comp Neurol 173:629–654

    Article  PubMed  CAS  Google Scholar 

  • Graham J, Pearson HE, Berman N, Murphy EH (1981) Laminar organization of superior colliculus in the rabbit: a study of receptive-field properties of single units. J Neurophysiol 45:915–932

    PubMed  CAS  Google Scholar 

  • Gray EG (1959) Axo-somatic and axodendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433

    PubMed  CAS  Google Scholar 

  • Gray EG (1969) Electron microscopy of excitatory and inhibitory synapses: a brief review. Prog Brain Res 31:141–155

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM (1972) Some fiber pathways related to the posterior thalamic region in the cat. Brain Behav Evol 6:363–393

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM (1973) The thalamo-cortical projection of the so-called posterior nuclear group: a study with anterograde degeneration methods in the cat. Brain Res 49:229–244

    Article  PubMed  CAS  Google Scholar 

  • Greenwood DD (1974) Critical bandwidth in man and in some other species in relation to the traveling wave envelope. In: Moskowitz HR, Scharf B, Stevens JC (eds) Sensation and measurement. Dordrecht, Reidel, pp 231–239

    Chapter  Google Scholar 

  • Greenwood DD, Goldberg JM (1970) Response of neurons in the cochlear nuclei to variations in noise bandwidth and to tone-noise combinations. J Acoust Soc Am 47:1022–1040

    Article  PubMed  CAS  Google Scholar 

  • Greenwood DD, Mamyama N (1965) Excitatory and inhibitory response areas of auditory neurons in the cochlear nucleus. J Neurophysiol 28:863–892

    PubMed  CAS  Google Scholar 

  • Greenwood DD, Merzenich MM, Roth GL (1976) Some preliminary observations on the interrelations between two-tone suppression and combination-tone driving in the anteroventral cochlear nucleus of the cat. J Acoust Soc Am 59:607–633

    Article  PubMed  CAS  Google Scholar 

  • Grinnell AD (1963 a) The neurophysiology of audition in bats: intensity and frequency parameters. J Physiol (Lond) 167:38–66

    CAS  Google Scholar 

  • Grinnell AD (1963 b) The neurophysiology of audition in bats: directional localization and binaural interaction. J Physiol (Lond) 167:97–113

    CAS  Google Scholar 

  • Grinnell AD, Grinnell VS (1965) Neural correlates of vertical localization by echo-locating bats. J Physiol (Lond) 181:830–851

    CAS  Google Scholar 

  • Grofová I, Ottersen OP, Rinvik E (1978) Mesencephalic and diencephalic afferents to the superior colliculus and periaqueductal grey substance demonstrated by retrograde axonal transport of horseradish peroxidase in the cat. Brain Res 146:205–220

    Article  PubMed  Google Scholar 

  • Guinan JJ Jr, Guinan SS, Norris BE (1972 a) Single auditory units in the superior olivary complex. I. Response to sounds and classifications based on physiological properties. Int J Neurosci 4:101–120

    Article  Google Scholar 

  • Guinan JJ Jr, Norris BE, Guinan SS (1972 b) Single auditory units in the superior olivary complex. II: Locations of unit categories and tonotopic organization. Int J Neurosci 4:147–166

    Article  Google Scholar 

  • Guinan JJ Jr, Warr WB, Norris BE (1983) Differential olivocochlear projections from lateral versus medial zones of the superior olivary complex. J Comp Neurol 221:358–370

    Article  PubMed  Google Scholar 

  • Guinan JJ Jr, Warr WB, Norris BE (1984) Topographic organization of the olivocochlear projections from the lateral and medial zones of the superior olivary complex. J Comp Neurol 226:21–27

    Article  PubMed  Google Scholar 

  • Hafter ER, Carrier SC (1972) Binaural interaction in low-frequency stimuli: the inability to trade time and intensity completely. J Acoust Soc Am 51:1852–1862

    Article  PubMed  CAS  Google Scholar 

  • Hall JL (1965) Binaural interaction in the accessory superior-olivary nucleus of the cat. J Acoust Soc Am 37:814–823

    Article  PubMed  Google Scholar 

  • Hand PJ, van Winkle T (1977) The efferent connections of the feline nucleus cuneatus. J Comp Neurol 171:83–110

    Article  PubMed  CAS  Google Scholar 

  • Harnischfeger G (1978) Single unit study in the inferior colliculus of the house mouse (Mus musculus). Neurosci Lett 9:279–284

    Article  PubMed  CAS  Google Scholar 

  • Harnischfeger G (1980) Brainstem units of echolocating bats code binaural time differences in the microsecond range. Naturwissenschaften 67:314–315

    Article  PubMed  CAS  Google Scholar 

  • Harnischfeger G, Neuweiler G, Schlegel P (1985) Interaural time and intensity coding in superior olivary complex and inferior colliculus of the echolocating bat Molossus ater. J Neurophysiol 53:89–109

    PubMed  CAS  Google Scholar 

  • Harris JD (1972) A florilegium of experiments on directional hearing. Acta Otolaryngol (Stockh) Suppl. 298:1–26

    CAS  Google Scholar 

  • Harris LR (1980) The superior colliculus and movements of the head and eyes in cats. J Physiol (Lond) 300:367–391

    CAS  Google Scholar 

  • Harris LR, Blakemore C, Donaghy M (1980) Integration of visual and auditory space in the mammalian superior colliculus. Nature 288:56–59

    Article  PubMed  CAS  Google Scholar 

  • Harrison JM (1978) Functional properties of the auditory system of the brain stem. In: Masterton RB (ed) Handbook of behavioural neurobiology, vol 1. Sensory integration. Plenum, New York, pp 409–458

    Google Scholar 

  • Harrison JM, Downey P (1970) Intensity changes at the ear as a function of the azimuth of a tone source: a comparative study. J Acoust Soc Am 47:1509–1518

    Article  PubMed  CAS  Google Scholar 

  • Harrison JM, Feldman ML (1970) Anatomical aspects of the cochlear nucleus and superior olivary complex. In: Neff WD (ed) Contributions to sensory physiology, vol 4. Academic, New York, pp 95–142

    Google Scholar 

  • Harrison JM, Howe ME (1974a) Anatomy of the afferent auditory nervous system of mammals. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology, vol V. Auditory system, part 1. Springer, Berlin Heidelberg New York, pp 284–336

    Google Scholar 

  • Harrison JM, Howe ME (1974b) Anatomy of the descending auditory system (mammalian). In: Keidel WD, Neff WD (eds) Handbook of sensory physiology, vol V. Auditory system, part 1. Springer, Berlin Heidelberg New York, pp 365–388

    Google Scholar 

  • Harrison JM, Irving R (1965) The anterior ventral cochlear nucleus. J Comp Neurol 124:15–42

    Article  PubMed  CAS  Google Scholar 

  • Harrison JM, Irving R (1966a) Ascending connections of the anterior ventral cochlear nucleus in the rat. J Comp Neurol 126:51–64

    Article  PubMed  CAS  Google Scholar 

  • Harrison JM, Irving R (1966b) The organization of the posterior ventral cochlear nucleus in the rat. J Comp Neurol 126:391–402

    Article  PubMed  CAS  Google Scholar 

  • Harrison JM, Irving R (1966c) Visual and nonvisual auditory systems in mammals. Science 154:738–743

    Article  PubMed  CAS  Google Scholar 

  • Harrison JM, Warr WB (1962) A study of the cochlear nuclei and ascending auditory pathways of the medulla. J Comp Neurol 119:341–380

    Article  PubMed  CAS  Google Scholar 

  • Hashikawa T (1983) The inferior colliculopontine neurons of the cat in relation to other collicular descending neurons. J Comp Neurol 219:241–249

    Article  PubMed  CAS  Google Scholar 

  • Hashikawa T, Kawamura K (1983) Retrograde labeling of ascending and descending neurons in the inferior colliculus. A fluorescent double labeling study in the cat. Exp Brain Res 49:457–461

    Article  PubMed  CAS  Google Scholar 

  • Hebrank J, Wright D (1974a) Are two ears necessary for localization of sound sources on the median plane? J Acoust Soc Am 56:935–938

    Article  PubMed  CAS  Google Scholar 

  • Hebrank J, Wright D (1974b) Spectral cues used in the localization of sound sources on the median plane. J Acoust Soc Am 56:1829–1834

    Article  PubMed  CAS  Google Scholar 

  • Heffner H, Masterton B (1980) Hearing in glires: domestic rabbit, cotton rat, feral house mouse and kangaroo rat. J Acoust Soc Am 68:1584–1599

    Article  Google Scholar 

  • Heffner RS, Heffner HE (1982) Hearing in the elephant (Elephas maximus): absolute sensitivity, frequency discrimination and sound localization. J Comp Physiol Psychol 96:926–944

    Article  PubMed  CAS  Google Scholar 

  • Held H (1893) Die centrale Gehörleitung. Archiv Anat Entwicklungsgesch 1g:201–248

    Google Scholar 

  • Held R (1968) Dissociation of visual functions by deprivation and rearrangement. Psychol Forsch 31:338–348

    Article  Google Scholar 

  • Held R, Ingle D, Schneider G, Trevarthen C (1967) Locating and identifying: two modes of visual processing. Psychol Forsch 31:41–42

    Google Scholar 

  • Henkel CK (1981) Afferent sources of a lateral midbrain tegmental zone associated with the pinnae in the cat as mapped by retrograde transport of horseradish peroxidase. J Comp Neurol 203:213–226

    Article  PubMed  CAS  Google Scholar 

  • Henkel CK (1983) Evidence of sub-collicular auditory projections to the medial geniculate nucleus in the cat: an autoradiographic and horseradish peroxidase study. Brain Res 259:21–30

    Article  PubMed  CAS  Google Scholar 

  • Henkel CK, Edwards SB (1978) The superior colliculus control of pinna movements in the cat: possible anatomical connections. J Comp Neurol 182:763–776

    Article  PubMed  CAS  Google Scholar 

  • Henkel CK, Spangler KM (1983) Organization of the efferent projections of the medial superior olivary nucleus in the cat as revealed by HRP and autoradiographic tracing methods. J Comp Neurol 221:416–428

    Article  PubMed  CAS  Google Scholar 

  • Henning GB (1974) Detectability of interaural delay in high-frequency complex waveforms. J Acoust Soc Am 55:84–90

    Article  PubMed  CAS  Google Scholar 

  • Hershkowitz RM, Durlach NI (1969) Interaural time and amplitude jnds for a 500-Hz tone. J Acoust Soc Am 46:1464–1467

    Article  PubMed  CAS  Google Scholar 

  • Hind JE (1972) Physiological correlates of auditory stimulus periodicity. Audiology 11:42–57

    Article  Google Scholar 

  • Hind JE, Anderson DJ, Brugge JF, Rose JE (1967) Coding of information pertaining to paired low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:794–816

    PubMed  CAS  Google Scholar 

  • Hind JE, Goldberg JM, Greenwood DD, Rose JE (1963) Some discharge characteristics of single neurons in the inferior colliculus of the cat. II. Timing of the discharges and observations on binaural stimulation. J Neurophysiol 26:321–341

    PubMed  CAS  Google Scholar 

  • Hirsch HR (1968) Perception of the range of a sound source of unknown strength. J Acoust Soc Am 43:373–374

    Article  PubMed  CAS  Google Scholar 

  • Hirsch HR, Morton Gibson M (1976) Responses of single units in the cat cochlear nucleus to sinusoidal amplitude modulation of tones and noise: linearity and relation to speech perception. J Neurosci Res 2:337–356

    Article  PubMed  CAS  Google Scholar 

  • Hirsch JA, Chan JCK, Yin TCT (1985) Responses of neurons in the cat’s superior colliculus to acoustic stimuli. I. Monaural and binaural response properties. J Neurophysiol 53:726–745

    PubMed  CAS  Google Scholar 

  • Holt RE, Thurlow WR (1969) Subject orientation and judgement of distance of a sound source. J Acoust Soc Am 46:1584–1585

    Article  PubMed  CAS  Google Scholar 

  • Horn G, Hill RM (1966) Responsiveness to sensory stimulation of units in the superior colliculus and subjacent tectotegmental regions of the rabbit. Exp Neurol 14:199–223

    Article  PubMed  CAS  Google Scholar 

  • Houben D, Gourevitch G (1979) Auditory lateralization in monkeys: an examination of two cues serving directional hearing. J Acoust Soc Am 66:1057–1063

    Article  PubMed  CAS  Google Scholar 

  • Houtsma AJM, Goldstein JL (1972) The central origin of the pitch of complex tones: evidence from musical interval recognition. J Acoust Soc Am 51:520–529

    Article  Google Scholar 

  • Huerta MF, Harting JK (1984) The mammalian superior colliculus: studies of its morphology and connections. In: Vanegas H (ed) The comparative neurology of the optic tectum. Plenum, New York, pp 687–773

    Google Scholar 

  • Hughes A (1979) A rose by any other name... On ‘Naming of Neurones’ by Rowe and Stone. Brain Behav Evol 16:52–64

    Article  PubMed  CAS  Google Scholar 

  • Hui GS, Disterhoft JF (1980) Cochlear nucleus unit responses to pure tones in the unanes-thetized rabbit. Exp Neurol 69:576–588

    Article  PubMed  CAS  Google Scholar 

  • Ibata Y, Pappas GD (1976) The fine structure of synapses in relation to the large spherical neurons in the anterior ventral cochlear nucleus of the cat. J Neurocytol 5:395–406

    Article  PubMed  CAS  Google Scholar 

  • Imig TJ, Adrian HO (1977) Binaural columns in the primary field (AI) of cat auditory cortex. Brain Res 138:241–257

    Article  PubMed  CAS  Google Scholar 

  • Imig TJ, Morel A (1983) Organization of the thalamocortical auditory system in the cat. Annu Rev Neurosci 6:95–120

    Article  PubMed  CAS  Google Scholar 

  • Inbody SB, Feng AS (1981) Binaural response characteristics of single neurons in the medial superior olivary nucleus of the albino rat. Brain Res 210:361–366

    Article  PubMed  CAS  Google Scholar 

  • Irvine DRF (1976) Effects of reflex middle-ear muscle contractions on cochlear responses to bone-conducted sound. Audiology 15:433–444

    Article  PubMed  CAS  Google Scholar 

  • Irvine DRF, Gago G (1985) Sensitivity of high-frequency neurones in inferior colliculus of the cat to interaural intensity differences: effects of variation in average binaural intensity. Proc Aust Physiol Pharmacol Soc 16:214P

    Google Scholar 

  • Irvine DRF, Jackson GD (1983) Auditory response properties of neurons in mesencephalic and rostral pontine reticular formation of the cat. J Neurophysiol 49:1319–1343

    PubMed  CAS  Google Scholar 

  • Irvine DRF, Wise LZ (1983 a) Topographic organization of interaural-intensity-difference sensitivity and the representation of auditory azimuthal location in the deep layers of the superior colliculus. In: Webster WR, Aitkin LM (eds) Mechanisms of hearing. Monash University Press, Clayton, pp 101–106

    Google Scholar 

  • Irvine DRF, Wise LZ (1983 b) The neural representation of auditory space. Proc Aust Physiol Pharmacol Soc 14:84–96

    Google Scholar 

  • Irving R, Harrison JM (1967) The superior olivary complex and audition: a comparative study. J Comp Neurol 130:77–86

    Article  PubMed  CAS  Google Scholar 

  • Jane JA, Masterton RB, Diamond IT (1965) The function of the tectum for attention to auditory stimuli in the cat. J Comp Neurol 125:165–191

    Article  PubMed  CAS  Google Scholar 

  • Javel E (1981) Suppression of auditory nerve responses I: temporal analysis, intensity effects and suppression contours. J Acoust Soc Am 69:1735–1745

    Article  PubMed  CAS  Google Scholar 

  • Javel E, Geisler CD, Ravindran A (1978) Two-tone suppression in auditory nerve of the cat: rate-intensity and temporal analyses. J Acoust Soc Am 63:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Jay M, Sparks DL (1984) Auditory receptive fields in primate superior colliculus shift with changes in eye position. Nature 309:345–347

    Article  PubMed  CAS  Google Scholar 

  • Jean-Baptiste M, Morest DK (1975) Transneuronal changes of synaptic endings and nuclear chromatin in the trapezoid body following cochlear ablations in cats. J Comp Neurol 162:111–134

    Article  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Psychol 41:35–39

    Article  CAS  Google Scholar 

  • Jeffress LA (1975) Localization of sound. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology, vol V. Auditory system, part 2. Springer, Berlin Heidelberg New York, pp 449–459

    Google Scholar 

  • Jen PH-S (1980) Coding of directional information by single neurones in the S-segment of the FM bat, Myotis lucifugus. J Exp Biol 87:203–216

    PubMed  CAS  Google Scholar 

  • Jen PH-S, Schlegel PA (1982) Auditory physiological properties of the neurones in the inferior colliculus of the big brown bat, Eptesicusfuscus. J Comp Physiol A 147:351–363

    Article  Google Scholar 

  • Jen PH, Sun X (1984) Pinna orientation determines the maximal directional sensitivity of bat auditory neurons. Brain Res 301:157–161

    Article  PubMed  CAS  Google Scholar 

  • Jen PH, Sun X, Kamada T, Zhang S, Shimozawa T (1984) Auditory response properties and spatial response areas of superior colliculus neurons of the FM bat, Eptesicusfuscus. J Comp Physiol A 154:407–413

    Article  Google Scholar 

  • Jenkins WM, Masterton RB (1982) Sound localization: effects of unilateral lesions in central auditory system. J Neurophysiol 47:987–1016

    PubMed  CAS  Google Scholar 

  • Jenkins WM, Merzenich MM (1984) Role of cat primary auditory cortex for sound localization behaviour. J Neurophysiol 52:819–847

    PubMed  CAS  Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Johnstone BM, Taylor KJ (1969) Use of probe microphones to measure sound pressures in the ear. J Acoust Soc Am 46:1404–1405

    Article  PubMed  CAS  Google Scholar 

  • Jones DR, Casseday JH (1979a) Projections of auditory nerve in the cat as seen by anterograde transport methods. Neuroscience 4:1299–1313

    Article  PubMed  CAS  Google Scholar 

  • Jones DR, Casseday JH (1979b) Projections to laminae in dorsal cochlear nucleus in the tree shrew, Tupaia glis. Brain Res 160:131–133

    Article  PubMed  CAS  Google Scholar 

  • Jones DR, Morest DK, Oliver DL, Potashner SJ (1984) Transganglionic transport of D-as-partate from cochlear nucleus to cochlea — a quantitative autoradiographic study. Hear Res 15:197–213

    Article  PubMed  CAS  Google Scholar 

  • Jones EG (1981) Functional subdivision and synaptic organization of the mammalian thalamus. In: Porter R (ed) International review of physiology. Neurophysiology IV, vol 25, chapter 5. University Park Press, Baltimore, pp 173–245

    Google Scholar 

  • Jones EG, Burton H (1976) Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. J Comp Neurol 168:197–248

    Article  PubMed  CAS  Google Scholar 

  • Jones EG, Powell TPS (1970) Electron microscopy of the somatic sensory cortex of the cat. I. Cell types and synaptic organization. Philos Trans R Soc Lond [Biol] Ser B 257:1–11

    Article  CAS  Google Scholar 

  • Jones LS, Disterhoft JF (1983) The effect of auditory stimulus rate on [14C] 2-deoxyglucose uptake in rabbit inferior colliculus. Brain Res 279:85–91

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH (1977) Sensory representation in mammals. In: Stent GS (ed) Function and formation of neural systems. Dahlem Konferenzen, Berlin, pp 65–80

    Google Scholar 

  • Kanaseki T, Sprague JM (1974) Anatomical organization of pretectal nuclei and tectal laminae in the cat. J Comp Neurol 158:319–338

    Article  PubMed  CAS  Google Scholar 

  • Kane EC (1973) Octopus cells in the cochlear nucleus of the cat: heterotypic synapses on homeotypic neurons. Int J Neurosci 5:251–279

    Article  PubMed  CAS  Google Scholar 

  • Kane EC (1974 a) Patterns of degeneration in the caudal cochlear nucleus of the cat after cochlear ablation. Anat Rec 179:67–91

    Article  PubMed  CAS  Google Scholar 

  • Kane EC (1974b) Synaptic organization in the dorsal cochlear nucleus of the cat: a light and electron microscopic study, J Comp Neurol 155:301–329

    Article  PubMed  CAS  Google Scholar 

  • Kane ES (1976a) Descending projections to specific regions of cat cochlear nucleus: a light microscopic study. Exp Neurol 52:372–388

    Article  PubMed  CAS  Google Scholar 

  • Kane ES (1976b) Descending inputs to caudal cochlear nucleus in cats: a horseradish per-oxidase (HRP) study. Am J Anat 146:433–441

    Article  PubMed  CAS  Google Scholar 

  • Kane ES (1977 a) Descending inputs to the octopus cell area of the cat cochlear nucleus: an electron microscopic study. J Comp Neurol 173:337–354

    Article  PubMed  CAS  Google Scholar 

  • Kane ES (1977b) Autoradiographic evidence of primary projections to the caudal cochlear nucleus in cats. Am J Anat 150:641–652

    Article  PubMed  CAS  Google Scholar 

  • Kane ES (1977c) Descending inputs to the cat dorsal cochlear nucleus: an electron microscopic study. J Neurocytol 6:583–605

    Article  PubMed  CAS  Google Scholar 

  • Kane ES, Barone LM (1980) The dorsal nucleus of the lateral lemniscus in the cat: neuronal types and their distributions. J Comp Neurol 192:797–826

    Article  PubMed  CAS  Google Scholar 

  • Kane ES, Conlee JW (1979) Descending inputs to the caudal cochlear nucleus of the cat: degeneration and autoradiographic studies. J Comp Neurol 187:759–784

    Article  PubMed  CAS  Google Scholar 

  • Kane ES, Finn RC (1977) Descending and intrinsic inputs to dorsal cochlear nucleus of cats: a horseradish peroxidase study. Neuroscience 2:897–912

    Article  Google Scholar 

  • Karten HJ (1967) The organization of the ascending auditory pathway in the pigeon (Columba livid). I. Diencephalic projection of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). Brain Res 6:409–427

    Article  PubMed  CAS  Google Scholar 

  • Katsuki Y (1961) Neural mechanism of auditory sensation in cats. In: Rosenblith WA (ed) Sensory communication. MIT, Cambridge, pp 561–583

    Google Scholar 

  • Kawamura K (1975) The pontine projection from the inferior colliculus in the cat. An experimental anatomical study. Brain Res 95:309–322

    Article  PubMed  CAS  Google Scholar 

  • Kawamura K, Konno T (1979) Various types of corticotectal neurons of cats as demonstrated by means of retrograde axonal transport of horseradish peroxidase. Exp Brain Res 35:161–175

    PubMed  CAS  Google Scholar 

  • Khanna SM, Stinson MR (1985) Specification of the acoustical input to the ear at high frequencies. J Acoust Soc Am 77:577–589

    Article  PubMed  CAS  Google Scholar 

  • Kiang NY-S (1965) Stimulus coding in the auditory nerve and cochlear nucleus. Acta Otolaryngol (Stockh) 59:186–200

    Article  Google Scholar 

  • Kiang NY-S (1968) A survey of recent developments in the study of auditory physiology. Ann Otol Rhinol Laryngol 77:656–675

    PubMed  CAS  Google Scholar 

  • Kiang NY-S (1975) Stimulus representation in the discharge patterns of auditory neurons. In: Tower DB (ed) The nervous system. Human communication and its disorders, vol 3. Raven, New York, pp 81–96

    Google Scholar 

  • Kiang NYS (1984) Peripheral neural processing of auditory information. In: Darian-Smith I (ed) Handbook of physiology, section 1. The nervous system, vol III. Sensory processes, chapter 15. Am Physiol Soc, Bethesda, pp 639–674

    Google Scholar 

  • Kiang NYS, Moxon EC (1972) Physiological considerations in artificial stimulation of the inner ear. Ann Otol Rhinol Laryngol 81:714–730

    PubMed  CAS  Google Scholar 

  • Kiang NYS, Moxon EC (1974) Tails of tuning curves of auditory-nerve fibers. J Acoust Soc Am 55:620–630

    Article  PubMed  CAS  Google Scholar 

  • Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965 a) Discharge patterns of single fibers in the cat’s auditory nerve. MIT, Cambridge

    Google Scholar 

  • Kiang NYS, Pfeiffer RR, Warr WB, Backus ASN (1965 b) Stimulus coding in the cochlear nucleus, Ann Otol Rhinol Laryngol 74:463–485

    PubMed  CAS  Google Scholar 

  • Kiang NYS, Morest DK, Godfrey DA, Guinan JJ Jr, Kane EC (1973) Stimulus coding at caudal levels of the cat’s auditory nervous system. I. Response characteristics of single neurons. In: Møller AR (ed) Basic mechanisms in hearing. Academic, New York, pp 455–478

    Google Scholar 

  • Kiang NYS, Godfrey DA, Norris BE, Moxon SE (1975) A block model of the cat cochlear nucleus. J Comp Neurol 162:221–246

    Article  PubMed  CAS  Google Scholar 

  • Kiang NYS, Liberman MC, Levine RA (1976) Auditory-nerve activity in cats exposed to ototoxic drugs and high-intensity sounds, Ann Otol Rhinol Laryngol 85:752–768

    PubMed  CAS  Google Scholar 

  • Kiang NYS, Eddington DK, Delgutte B (1979) Fundamental considerations in designing auditory implants. Acta Otolaryngol 87:204–218

    Article  PubMed  CAS  Google Scholar 

  • Kiang NYS, Rho JM, Northrop CC, Liberman MC, Ryugo DK (1982) Hair-cell innervation by spiral ganglion cells in adult cats. Science 217:175–177

    Article  PubMed  CAS  Google Scholar 

  • Kim DO, Moinar CE (1979) A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones, J Neurophysiol 42:16–30

    PubMed  CAS  Google Scholar 

  • King AJ, Palmer AR (1983) Cells responsive to free-field auditory stimuli in guinea-pig superior colliculus: distribution and response properties. J Physiol (Lond) 342:361–381

    CAS  Google Scholar 

  • Kiss A, Majorossy K (1983) Neuron morphology and synaptic architecture in the medial superior olivary nucleus. Exp Brain Res 52:315–327

    Article  PubMed  CAS  Google Scholar 

  • Kitzes LM, Morton Gibson M, Rose JE, Hind JE (1978) Initial discharge latency and threshold considerations for some neurons in cochlear nuclear complex of the cat, J Neurophysiol 41:1165–1182

    PubMed  CAS  Google Scholar 

  • Kitzes LM, Wrege KS, Cassady JM (1980) Patterns of responses of cortical cells to binaural stimulation. J Comp Neurol 192:455–472

    Article  PubMed  CAS  Google Scholar 

  • Klinke R, Galley N (1974) Efferent innervation of vestibular and auditory receptors. Physiol Rev 54:316–357

    PubMed  CAS  Google Scholar 

  • Klinke R, Boerger G, Gruber J (1969) Studies on the functional significance of efferent innervation in the auditory system: afferent neuronal activity as influenced by contralaterally applied sound. Pflügers Arch 306:165–175

    Article  PubMed  CAS  Google Scholar 

  • Klumpp RG, Eady HR (1956) Some measurements of interaural time difference thresholds. J Acoust Soc Am 28:859–860

    Article  Google Scholar 

  • Knudsen EI (1982) Auditory and visual maps of space in the optic tectum of the owl. J Neurosci 2:1177–1194

    PubMed  CAS  Google Scholar 

  • Knudsen El (1983a) Subdivisions of the inferior colliculus in the barn owl (Tyto alba). J Comp Neurol 218:174–186

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI (1983 b) Early auditory experience aligns the auditory map of space in the optic tectum of the barn owl. Science 222:939–942

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI (1983 c) Space coding in the vertebrate auditory system. In: Lewis B (ed) Bio-acoustics: a comparative approach. Academic, London, pp 311–344

    Google Scholar 

  • Knudsen EI (1984 a) Synthesis of a neural map of auditory space in the owl. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic aspects of neocortical function. Wiley, New York, pp 375–396

    Google Scholar 

  • Knudsen EI (1984b) Auditory properties of space-tuned units in owl’s optic tectum. J Neurophysiol 52:709–723

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1984 c) The role of auditory experience in the development and maintenance of sound localization. Trends Neurosci 7:326–330

    Article  Google Scholar 

  • Knudsen EI, Knudsen PF (1983) Space-mapped auditory projections from the inferior colliculus to the optic tectum in the barn owl (Tyto alba). J Comp Neurol 218:187–196

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978 a) A neural map of auditory space in the owl. Science 200:795–797

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978b) Space and frequency are represented separately in auditory midbrain of the owl. J Neurophysiol 41:870–884

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978c) Center-surround organization of auditory receptive fields in the owl. Science 202:778–780

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Physiol A 133:13–21

    Article  Google Scholar 

  • Knudsen EI, Konishi M (1980) Monaural occlusion shifts receptive-field locations of auditory midbrain units in the owl. J Neurophysiol 44:687–695

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M, Pettigrew JD (1977) Receptive fields of auditory neurons in the owl. Science 198:1278–1280

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Blasdel GG, Konishi M (1979) Sound localization by the barn owl (Tyto alba) measured with the search coil technique. J Comp Physiol A 133:1–11

    Article  Google Scholar 

  • Koerber KC, Pfeiffer RR, Warr WB, Kiang NYS (1966) Spontaneous spike discharges from single units in the cochlear nucleus after destruction of the cochlea. Exp Neurol 16:119–130

    Article  PubMed  CAS  Google Scholar 

  • Konishi M (1973 a) Locatable and non-locatable acoustic signals for barn owls. Am Nat 107:775–785

    Article  Google Scholar 

  • Konishi M (1973 b) How the owl tracks its prey. Am Sci 61:414–427

    Google Scholar 

  • Konishi M (1978) Ethological aspects of auditory pattern recognition. In: Held H, Leibowitz W, Teuber H-L (eds) Handbook of sensory physiology, vol VIII, Perception. Springer, Berlin Heidelberg New York, pp 289–309

    Google Scholar 

  • Konishi M (1983) Neuroethology of acoustic prey localization in the barn owl. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 303–317

    Chapter  Google Scholar 

  • Kudo M (1981) Projections of the nuclei of the lateral lemniscus in the cat: An autoradiographic study. Brain Res 221:57–69

    Article  PubMed  CAS  Google Scholar 

  • Kudo M, Niimi K (1978) Ascending projections of the inferior colliculus onto the medial geniculate body in the cat studied by anterograde and retrograde tracing techniques. Brain Res 155:113–117

    Article  PubMed  CAS  Google Scholar 

  • Kudo M, Niimi K (1980) Ascending projections of the inferior colliculus in the cat. An autoradiographic study. J Comp Neurol 191:545–556

    Article  PubMed  CAS  Google Scholar 

  • Kudo M, Tashiro T, Higo S, Matsuyama T, Kawamura S (1984) Ascending projections from the nucleus of the brachium of the inferior colliculus in the cat. Exp Brain Res 54:203–211

    Article  PubMed  CAS  Google Scholar 

  • Kuhl PK (1978) Predispositions for the perception of speech-sound categories: a species-specific phenomenon? In: Minifie FD, Lloyd LL (eds) Communication and cognitive abilities-early behavioral assessment. University Park Press, Baltimore, pp 229–255

    Google Scholar 

  • Kuhl PK (1981) Discrimination of speech by nonhuman animals: basic auditory sensitivities conducive to the perception of speech-sound categories. J Acoust Soc Am 70:340–349

    Article  Google Scholar 

  • Kuhl PK, Miller JD (1978) Speech perception by the chinchilla: identification functions for synthetic VOT stimuli. J Acoust Soc Am 63:905–917

    Article  PubMed  CAS  Google Scholar 

  • Kuhn GF (1977) Model for the interaural time differences in the azimuthal plane. J Acoust Soc Am 62:157–167

    Article  Google Scholar 

  • Kuwada S, Yin TCT (1983) Binaural interaction in low-frequency neurons in the inferior colliculus of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function. J Neurophysiol 50:981–999

    PubMed  CAS  Google Scholar 

  • Kuwada S, Yin TCT, Wickesberg RE (1979) Response of cat inferior colliculus neurons to binaural beat stimuli: possible mechanisms for sound localization. Science 206:586–588

    Article  PubMed  CAS  Google Scholar 

  • Kuwada S, Yin TCT, Haberly LB, Wickesberg RE (1980) Binaural interaction in the cat inferior colliculus: physiology and anatomy. In: van den Brink G, Bilsen FA (eds) Psychophysical, physiological and behavioral studies in hearing. Delft University Press, Delft, pp 40–50

    Google Scholar 

  • Kuwada S, Yin TCT, Syka J, Buunen TJF, Wickesberg RE (1984) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. IV. Comparison of monaural and binaural response properties. J Neurophysiol 51:1306–1325

    PubMed  CAS  Google Scholar 

  • Langford TL (1984) Responses elicited from medial superior olivary neurons by stimuli associated with binaural masking and unmasking. Hear Res 15:39–50

    Article  PubMed  CAS  Google Scholar 

  • Langner G (1981) Neuronal mechanisms for pitch analysis in the time domain. Exp Brain Res 44:450–454

    Article  PubMed  CAS  Google Scholar 

  • Langner G (1983) Evidence for neuronal periodicity detection in the auditory system of the guinea fowl: implications for pitch analysis in the time domain. Exp Brain Res 52:333–355

    Article  PubMed  CAS  Google Scholar 

  • Lavine RA (1971) Phase-locking in response of single neurons in cochlear nuclear complex of the cat to low-frequency tonal stimuli. J Neurophysiol 34:467–483

    PubMed  CAS  Google Scholar 

  • Leake-Jones PA, Snyder RL (1982) Uptake and transport of horseradish peroxidase by cochlear spiral ganglion neurons. Hear Res 8:199–223

    Article  PubMed  CAS  Google Scholar 

  • Leiman AL, Hafter ER (1972) Responses of inferior colliculus neurons to free field auditory stimuli. Exp Neurol 35:431–449

    Article  PubMed  CAS  Google Scholar 

  • Lenn NJ, Reese TS (1966) The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Am J Anat 118:375–389

    Article  PubMed  CAS  Google Scholar 

  • LeVay S (1973) Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi preparations. J Comp Neurol 150:53–86

    Article  PubMed  CAS  Google Scholar 

  • Lewis B (1983) Directional cues for auditory localization. In: Lewis B (ed) Bioacoustics. A comparative approach. Academic, London, pp 233–257

    Google Scholar 

  • Li RYS, Guinan JJ (1971) Antidromic and orthodromic stimulation of neurons receiving calyces of Held. Quarterly progress report, research laboratory of electronics. MIT 100:227–234

    Google Scholar 

  • Liberman AM, Cooper FS, Shankweiler DP, Studdert-Kennedy M (1967) Perception of the speech code. Psychol Rev 74:431–461

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC (1980) Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections. Hear Res 3:45–63

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC (1982 a) The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC (1982 b) Single-neuron labeling in the cat auditory nerve. Science 216:1239–1241

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW (1984) Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 16:55–74

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC, Kiang NYS (1984) Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate-and phase-level functions. Hear Res 16:75–90

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC, Oliver ME (1984) Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 223:163–176

    Article  PubMed  CAS  Google Scholar 

  • Licklider JCR (1951) A duplex theory of pitch perception. Experientia 7:128–134

    Article  PubMed  CAS  Google Scholar 

  • Lindsey BG (1975) Fine structure and distribution of axon terminals from the cochlear nucleus on neurons in the medial superior olivary nucleus of the cat. J Comp Neurol 160:81–103

    Article  PubMed  CAS  Google Scholar 

  • Lippe WR, Steward O, Rubel EW (1980) The effect of unilateral basilar papilla removal upon nuclei laminaos and magnocellularis of the chick examined with [3H] 2-deoxy-D-glucose autoradiography. Brain Res 196:43–58

    Article  PubMed  CAS  Google Scholar 

  • Loeb GE, White WM, Merzenich MM (1983) Spatial cross-correlation: a proposed mechanism for acoustic pitch perception. Biol Cybern 47:149–163

    Article  PubMed  CAS  Google Scholar 

  • Lorente de Nó R (1933 a) Anatomy of the eighth nerve. The central projection of the nerve endings of the internal ear. Laryngoscope 43:1–38

    Google Scholar 

  • Lqrente de Nó R (1933 b) Anatomy of the eighth nerve. III. General plan of structure of the primary cochlear nuclei. Laryngoscope 43:327–350

    Google Scholar 

  • Lorente de Nó R (1979) Central representation of the eighth nerve. In: Goodhill V (ed) Ear diseases, deafness and dizziness. Harper and Row, Hagerstown, pp 64–83

    Google Scholar 

  • Lorente de Nó R (1981) The primary acoustic nuclei. Raven, New York

    Google Scholar 

  • Luk GD, Morest DK, McKenna NM (1974) Origins of the crossed olivocochlear bundle shown by an acid phosphatase method in the cat. Ann Otol Rhinol Laryngol 83:382–392

    PubMed  CAS  Google Scholar 

  • Manis PB, Brownell WE (1983) Synaptic organization of eighth nerve afferents to cat dorsal cochlear nucleus. J Neurophysiol 50:1156–1181

    PubMed  CAS  Google Scholar 

  • Manley G (1983) Auditory nerve fibre activity in mammals. In: Lewis B (ed) Bioacoustics: a comparative approach. Academic, London, pp 207–232

    Google Scholar 

  • Martin MR (1981) Morphology of the cochlear nucleus of the normal and reeler mutant mouse. J Comp Neurol 197:141–152

    Article  PubMed  CAS  Google Scholar 

  • Mast TE (1970) Binaural interaction and contralateral inhibition in dorsal cochlear nucleus of the chinchilla. J Neurophysiol 33:108–115

    PubMed  CAS  Google Scholar 

  • Mast TE (1973) Dorsal cochlear nucleus of the chinchilla: excitation by contralateral sound. Brain Res 62:61–70

    Article  PubMed  CAS  Google Scholar 

  • Mast TE, Chung DY (1973) Binaural interaction in the superior colliculus of the chinchilla. Brain Res 62:227–230

    Article  PubMed  CAS  Google Scholar 

  • Masterton B, Jane JA, Diamond IT (1967) Role of brainstem auditory structures in sound localization. I. Trapezoid body, superior olive, and lateral lemniscus. J Neurophysiol 30:341–359

    PubMed  CAS  Google Scholar 

  • Masterton B, Heffner H, Ravizza R (1969) The evolution of human hearing. J Acoust Soc Am 45:966–985

    Article  PubMed  CAS  Google Scholar 

  • Masterton B, Thompson GC, Bechtold JK, RoBards MJ (1975) Neuroanatomical basis of binaural phase-difference analysis for sound localization; a comparative study. J Comp Physiol Psychol 89:379–386

    Article  PubMed  CAS  Google Scholar 

  • Masterton RB (1974) Adaptation for sound localization in the ear and brainstem of mammals. Fed Proc 33:1904–1910

    PubMed  CAS  Google Scholar 

  • Masterton RB, Diamond IT (1967) Medial superior olive and sound localization. Science 155:1696–1697

    Article  PubMed  CAS  Google Scholar 

  • Masterton RB, Imig TJ (1984) Neural mechanisms for sound localization. Annu Rev Physiol 46:275–287

    Article  PubMed  CAS  Google Scholar 

  • Masterton RB, Jane JA, Diamond IT (1968) Role of brain-stem auditory structures in sound localization. II. Inferior colliculus and its brachium. J Neurophysiol 31:96–108

    PubMed  CAS  Google Scholar 

  • Masterton RB, Glendenning KK, Nudo RJ (1981) Anatomical-behavioral analyses of hind-brain sound localization mechanisms. In: Syka J, Aitkin L (eds) Neuronal mechanisms of hearing. Plenum, New York, pp 263–275

    Google Scholar 

  • Masterton RB, Glendenning KK, Nudo RJ (1982) Anatomical pathways subserving the contralateral representation of a sound source. In: Gatehouse RW (ed) Localization of sound: theory and applications. Amphora, Groton, pp 113–125

    Google Scholar 

  • Mays LE, Sparks DL (1980) Saccades are spatially, not retinocentrically, coded. Science 208:1163–1165

    Article  PubMed  CAS  Google Scholar 

  • McDonald DM, Rasmussen GL (1971) Ultrastructural characteristics of synaptic endings in the cochlear nucleus having acetylcholinesterase activity. Brain Res 28:1–18

    Article  PubMed  CAS  Google Scholar 

  • McFadden D (1981) The problem of different interaural time differences at different frequencies. J Acoust Soc Am 69:1836–1837

    Article  Google Scholar 

  • McFadden D, Pasanen EG (1976) Lateralization at high frequencies based on interaural time differences. J Acoust Soc Am 59:634–639

    Article  PubMed  CAS  Google Scholar 

  • McHaffie JG, Stein BE (1982) Eye movements evoked by electrical stimulation in the superior colliculus of rats and hamsters. Brain Res 247:243–253

    Article  PubMed  CAS  Google Scholar 

  • MeIlwain JT (1975) Visual receptive fields and their images in superior colliculus of the cat. J Neurophysiol 38:219–230

    Google Scholar 

  • McIlwain JT (1976) Large receptive fields and spatial transformations in the visual system. In: Porter R (ed) International review of physiology. Neurophysiology II, vol 10. University Park Press, Baltimore, pp 223–248

    Google Scholar 

  • Mcllwain JT (1982) Lateral spread of neural excitation during microstimulation in intermediate gray layer of cat’s superior colliculus. J Neurophysiol 47:167–178

    Google Scholar 

  • Melzer P (1984) The central auditory pathway of the gerbil Psammomys obesus: a deoxy-glucose study. Hear Res 15:187–195

    Article  PubMed  CAS  Google Scholar 

  • Meredith MA, Stein BE (1983) Interactions among converging sensory inputs in the superior colliculus. Science 221:389–391

    Article  PubMed  CAS  Google Scholar 

  • Mershon DH, King LE (1975) Intensity and reverberation as factors in the auditory perception of egocentric distance. Percept Psychophys 18:409–415

    Article  Google Scholar 

  • Merzenich MM (1983) Auditory nerve array representation of complex electrical and sound stimuli. In: Webster WR, Aitkin LM (eds) Mechanisms of hearing. Monash University Press, Clayton, pp 163–167

    Google Scholar 

  • Merzenich MM, Reid MD (1974) Representation of the cochlea within the inferior colliculus of the cat. Brain Res 77:397–415

    Article  PubMed  CAS  Google Scholar 

  • Merzenich MM, Roth GL, Andersen RA, Knight PL, Colwell SA (1977) Some basic features of organization of the central auditory nervous system. In: Evans EF, Wilson JP (eds) Psychophysics and physiology of hearing. Academic, London, pp 485–497

    Google Scholar 

  • Merzenich MM, Andersen RA, Middlebrooks JH (1979) Functional and topographic organization of the auditory cortex. In: Creutzfeldt O, Scheich H, Schreiner C (eds) Hearing mechanisms and speech. Springer, Berlin Heidelberg New York, pp 61–75

    Chapter  Google Scholar 

  • Merzenich MM, Jenkins WM, Middlebrooks JC (1984) Observations and hypotheses on special organizational features of the central auditory nervous system. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic aspects of neocortical function. Wiley, New York, pp 397–424

    Google Scholar 

  • Middlebrooks JC, Dykes RW, Merzenich MM (1980) Binaural response-specific bands in primary auditory cortex (AI) of the cat: topographical organization orthogonal to iso-frequency contours. Brain Res 181:31–48

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Knudsen EI (1984) A neural code for auditory space in the cat’s superior colliculus. J Neurosci 4:2621–2634

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Pettigrew JD (1981) Functional classes of neurons in primary auditory cortex of the cat distinguished by sensitivity to sound location. J Neurosci 1: 107–120

    PubMed  CAS  Google Scholar 

  • Miller JD (1970) Audibility curve of the chinchilla. J Acoust Soc Am 48:513–523

    Article  PubMed  CAS  Google Scholar 

  • Miller JD (1977) Perception of speech sounds in animals: evidence for speech processing by mammalian auditory mechanisms. In: Bullock TH (ed) Recognition of complex acoustic signals. Abakon Verlagsgesellschaft, Berlin, pp 49–58

    Google Scholar 

  • Miller MI, Sachs MB (1983) Representation of stop consonants in the discharge patterns of auditory-nerve fibers. J Acoust Soc Am 74:502–517

    Article  PubMed  CAS  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–246

    Article  Google Scholar 

  • Mills AW (1960) Lateralization of high frequency tones. J Acoust Soc Am 32:132–134

    Article  Google Scholar 

  • Mills AW (1972) Auditory localization. In: Tobias JV (ed) Foundations of modern auditory theory, vol II. Academic, New York, pp 303–348

    Google Scholar 

  • Mogus MA (1972) Single unit responses to frequency-modulated tones and possible relationship to inhibitory effect of two-tone stimuli. Brain Res 43:668–671

    Article  PubMed  CAS  Google Scholar 

  • Mohler CW, Wurtz RH (1977) Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. J Neurophysiol 40:74–94

    PubMed  CAS  Google Scholar 

  • Moiseff A, Konishi M (1981) Neuronal and behavioral sensitivity to binaural time differences in the owl. J Neurosci 1:40–48

    PubMed  CAS  Google Scholar 

  • Moiseff A, Konishi M (1983 a) The neural mechanisms of sound localization in the barn owl. In: Webster WR, Aitkin LM (eds) Mechanisms of hearing. Monash University Press, Clayton, pp 107–110

    Google Scholar 

  • Moiseff A, Konishi M (1983 b) Binaural characteristics of units in the owl’s brainstem auditory pathway: precursors of restricted spatial receptive fields. J Neurosci 3:2553–2562

    PubMed  CAS  Google Scholar 

  • Molino J (1973) Perceiving the range of a sound source when the direction is known. J Acoust Soc Am 53:1301–1304

    Article  PubMed  CAS  Google Scholar 

  • Møller AR (1969 a) Unit responses in the rat cochlear nucleus to repetitive, transient sounds. Acta Physiol Scand 75:542–551

    Article  PubMed  Google Scholar 

  • Møller AR (1969b) Unit responses in the cochlear nucleus of the rat to sweep tones. Acta Physiol Scand 76:503–512

    Article  PubMed  Google Scholar 

  • Møller AR (1970) Periodicity coding in the peripheral auditory system. In: Andersen P, Jansen JKS (eds) Excitatory synaptic mechanisms. Scandinavian University Book, Oslo, pp 287–293

    Google Scholar 

  • Møller AR (1971) Unit responses in the rat cochlear nucleus to tones of rapidly varying frequency and amplitude. Acta Physiol Scand 81:540–556

    Article  PubMed  Google Scholar 

  • Møller AR (1972 a) Coding of amplitude and frequency modulated sounds in the cochlear nucleus of the rat. Acta Physiol Scand 86:223–238

    Article  PubMed  Google Scholar 

  • Møller AR (1972b) Coding of sounds in lower levels of the auditory system. Q Rev Bio-phys 5:59–155

    Article  Google Scholar 

  • Møller AR (1974a) The acoustic middle ear muscle reflex. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology, vol V. Auditory system, part 1. Springer, Berlin Heidelberg New York, pp 519–548

    Google Scholar 

  • Møller AR (1974 b) Responses of units in the cochlear nucleus to sinusoidally amplitude-modulated tones. Exp Neurol 45:104–117

    Article  Google Scholar 

  • Møller AR (1974 c) Coding of sounds with rapidly varying spectrum in the cochlear nucleus. J Acoust Soc Am 55:631–640

    Article  PubMed  Google Scholar 

  • Møller AR (1977) Coding of time-varying sounds in the cochlear nucleus. Audiology 17:446–468

    Article  Google Scholar 

  • Møller AR (1983) Auditory physiology. Academic, New York

    Google Scholar 

  • Möller J, Neuweiler G, Zöller H (1978) Response characteristics of inferior colliculus neurons of the awake CF-FM bat Rhinolophus ferrumequinum. I. Single tone stimulation. J Comp Physiol A 125:217–225

    Article  Google Scholar 

  • Moinar CE, Pfeiffer RR (1968) Interpretation of spontaneous spike discharge patterns of neurons in the cochlear nucleus. Proc IEEE 56:993–1004

    Article  Google Scholar 

  • Moore BCJ (1982) An introduction to the psychology of hearing. 2nd edn. Academic, London

    Google Scholar 

  • Moore BCJ, Raab DH (1974) Pure-tone intensity discrimination: some experiments relating to the “near-miss” to Weber’s law. J Acoust Soc Am 55:1049–1054

    Article  PubMed  CAS  Google Scholar 

  • Moore CN, Casseday JH, Neff WD (1974) Sound localization: the role of the commissural pathways of the auditory system of the cat. Brain Res 82:13–26

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, Irvine DRF (1979) A developmental study of the sound pressure transformation by the head of the cat. Acta Otolaryngol (Stockh) 87:434–440

    Article  CAS  Google Scholar 

  • Moore DR, Irvine DRF (1980) Development of binaural input, response patterns, and discharge rate in single units of the cat inferior colliculus. Exp Brain Res 38:103–108

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, Irvine DRF (1981) Development of responses to acoustic interaural intensity differences in the cat inferior colliculus. Exp Brain Res 41:301–309

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, Hutchings ME, Addison PD, Semple MN, Aitkin LM (1984a) Properties of spatial receptive fields in the central nucleus of the cat inferior colliculus. II. Stimulus intensity effects. Hear Res 13:175–188

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, Semple MN, Addison PD, Aitkin LM (1984 b) Properties of spatial receptive fields in the central nucleus of the cat inferior colliculus. I. Responses to tones of low intensity. Hear Res 13:159–174

    Article  PubMed  CAS  Google Scholar 

  • Moore JK (1980) The primate cochlear nuclei: loss of lamination as a phylogenetic process. J Comp Neurol 193:609–629

    Article  PubMed  CAS  Google Scholar 

  • Moore JK, Moore RY (1971) A comparative study of the superior olivary complex in the primate brain. Folia Primatol (Basel) 16:35–51

    Article  CAS  Google Scholar 

  • Moore JK, Osen KK (1979) The cochlear nuclei in man. Am J Anat 154:393–418

    Article  PubMed  CAS  Google Scholar 

  • Moore TJ, Cashin JL Jr (1974) Response patterns of cochlear nucleus neurons to excerpts from sustained vowels. J Acoust Soc Am 56:1565–1576

    Article  PubMed  CAS  Google Scholar 

  • Moore TJ, Cashin JL Jr (1976) Response of coehlear-nucleus neurons to synthetic speech. J Acoust Soc Am 59:1443–1449

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Goldberg JM (1963) Ascending projections of the inferior colliculus in the cat. J Comp Neurol 121:109–136

    Article  Google Scholar 

  • Morest DK (1964a) The laminar structure of the inferior colliculus of the cat. Anat Rec 148:314

    Google Scholar 

  • Morest DK (1964b) The neuronal architecture of the medial geniculate body of the cat. J Anat 98:611–630

    PubMed  CAS  Google Scholar 

  • Morest DK (1964 c) The probable significance of synaptic and dendritic patterns of the thalamic and midbrain auditory system. Anat Rec 148:390–391

    Google Scholar 

  • Morest DK (1965 a) The laminar structure of the medial geniculate body of the cat. J Anat 99:143–160

    PubMed  CAS  Google Scholar 

  • Morest DK (1965 b) The lateral tegmental system of the midbrain and the medial geniculate body: a study with Golgi and Nauta methods in cats. J Anat 99:611–634

    PubMed  CAS  Google Scholar 

  • Morest DK (1966) The cortical structure of the inferior quadrigeminal lamina of the cat. Anat Rec 154:389–390

    Google Scholar 

  • Morest DK (1968 a) The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivo-cochlear bundle. Brain Res 9:288–311

    Article  PubMed  CAS  Google Scholar 

  • Morest DK (1968 b) The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Z Anat Entwicklungsgesch 127:201–220

    Article  PubMed  CAS  Google Scholar 

  • Morest DK (1973) Auditory neurons of the brain stem. Adv Oto-rhino-laryngol 20:337–356

    CAS  Google Scholar 

  • Morest DK (1981) The Golgi methods. In: Heym ChH, Forssmann WG (eds) Techniques in neuroanatomical research. Springer, Berlin Heidelberg New York, pp 124–138

    Chapter  Google Scholar 

  • Morest DK, Bohne BA (1983) Noise-induced degeneration in the brain and representation of inner and outer hair cells. Hear Res 9:145–151

    Article  PubMed  CAS  Google Scholar 

  • Morest DK, Oliver DL (1984) The neuronal architecture of the inferior colliculus in the cat: defining the functional anatomy of the auditory midbrain. J Comp Neurol 222:209–236

    Article  PubMed  CAS  Google Scholar 

  • Morest DK, Kiang NYS, Kane EC, Guinan JJ Jr, Godfrey DA (1973) Stimulus coding at caudal levels of the cat’s auditory nervous system: II. Patterns of synaptic organization. In: Moller AR (ed) Basic mechanisms in hearing. Academic, New York, pp 479–509

    Google Scholar 

  • Moskowitz N, Liu JC (1972) Central projections of the spiral ganglion of the squirrel monkey. J Comp Neurol 144:335–344

    Article  PubMed  CAS  Google Scholar 

  • Mountain DC (1980) Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 210:71–72

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB (1978) An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman GM, Mountcastle VB (eds) The mindful brain. Cortical organization and the group-selective theory of higher brain function. MIT, Cambridge, pp 7–50

    Google Scholar 

  • Moushegian G, Rupert A, Galambos R (1962) Microelectrode study of ventral cochlear nucleus of the cat. J Neurophysiol 25:515–529

    PubMed  CAS  Google Scholar 

  • Moushegian G, Rupert A, Whitcomb MA (1964) Medial superior-olivary-unit response patterns to monaural and binaural clicks. J Acoust Soc Am 36:196–202

    Article  Google Scholar 

  • Moushegian G, Rupert AL, Langford TL (1967) Stimulus coding by medial superior olivary neurons. J Neurophysiol 30:1239–1261

    PubMed  CAS  Google Scholar 

  • Moushegian G, Rupert AL, Gidda JS (1975) Functional characteristics of superior olivary neurons to binaural stimuli. J Neurophysiol 38:1037–1048

    PubMed  CAS  Google Scholar 

  • Mucke L, Norita M, Benedek G, Creutzfeldt O (1982) Physiologic and anatomic investigation of a visual cortical area situated in the ventral bank of the anterior ectosylvian sulcus of the cat. Exp Brain Res 46:1–11

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini E, Warr WB, Osen KK (1980a) Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat, and mouse. J Comp Neurol 191:581–606

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini E, Osen KK, Dahl A-L, Friedrich VL Jr, Korte G (1980b) Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nucleus complex of cat, rat and mouse. J Neurocytol 9:537–570

    Article  PubMed  CAS  Google Scholar 

  • Musicant AD, Butler RA (1984) The influence of pinnae-based spectral cues on sound localization. J Acoust Soc Am 75:1195–1200

    Article  PubMed  CAS  Google Scholar 

  • Nakajima Y (1971) Fine structure of the medial nucleus of the trapezoid body of the bat with special reference to two types of synaptic endings. J Cell Biol 50:121–134

    Article  PubMed  CAS  Google Scholar 

  • Neff WD (1962) Neural structures concerned in localization of sound in space. Psychol Beitr 6:492–500

    Google Scholar 

  • Neff WD (1968) Localization and lateralization of sound in space. In: de Reuck AVS, Knight J (eds) Hearing mechanism in vertebrates. Churchill, London, pp 207–233

    Google Scholar 

  • Neff WD, Casseday JH (1977) Effects of unilateral ablation of auditory cortex on monaural cat’s ability to localize sound. J Neurophysiol 40:44–52

    PubMed  CAS  Google Scholar 

  • Neff WD, Fisher JF, Diamond IT, Yela M (1956) Role of auditory cortex in discrimination requiring localization of sound in space. J Neurophysiol 19:500–512

    PubMed  Google Scholar 

  • Neff WD, Diamond IT, Casseday JH (1975) Behavioral studies of auditory discrimination: central nervous system. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology. Vol V. Auditory system, part 2. Springer, Berlin Heidelberg New York, pp 307–400

    Google Scholar 

  • Nelson PG, Erulkar SD (1963) Synaptic mechanisms of excitation and inhibition in the central auditory pathway. J Neurophysiol 26:908–923

    PubMed  CAS  Google Scholar 

  • Nelson PG, Erulkar SD, Bryan JS (1966) Responses of units of the inferior colliculus to time-varying acoustic stimuli. J Neurophysiol 29:834–860

    PubMed  CAS  Google Scholar 

  • Neuweiler G, Vater M (1977) Response patterns to pure tones of cochlear nucleus units in the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol A 115:119–133

    Article  Google Scholar 

  • Niimi K, Naito FD (1974) Cortical projections of the medial geniculate body in the cat. Exp Brain Res 19:326–342

    Article  PubMed  CAS  Google Scholar 

  • Noda Y, Pirsig W (1974) Anatomical projection of the cochlea to the cochlear nuclei of the guinea pig. Arch Otorhinolaryngol 208:107–120

    Article  PubMed  CAS  Google Scholar 

  • Noort van J (1969) The structure and connections of the inferior colliculus. An investigation of the lower auditory system. Van Gorcum, Assen

    Google Scholar 

  • Nordeen KW, Killackey HP, Kitzes LM (1983) Ascending auditory projections to the inferior colliculus in the adult gerbil, Meriones unguiculatus. J Comp Neurol 214:131–143

    Article  PubMed  CAS  Google Scholar 

  • Norita M (1980) Neurons and synaptic patterns in the deep layers of the superior colliculus of the cat. A Golgi and electron microscopic study. J Comp Neurol 190:29–48

    Article  PubMed  CAS  Google Scholar 

  • Nudo RJ, Masterton RB (1984) 2-Deoxyglucose studies of stimulus coding in the brainstem auditory system of the cat. In: Neff WD (ed) Contributions to sensory physiology, vol 8. Academic, London, pp 79–97

    Google Scholar 

  • Nuetzel JM, Hafter ER (1976) Lateralization of complex waveforms: effects of fine structure, amplitude, and duration. J Acoust Soc Am 60:1339–1346

    Article  PubMed  CAS  Google Scholar 

  • Oertel D (1983) Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J Neurosci 3:2043–2053

    PubMed  CAS  Google Scholar 

  • Oldfield SR, Parker SPA (1984a) Acuity of sound localization: a topography of auditory space, I. Normal hearing conditions. Perception 13:581–600

    Article  PubMed  CAS  Google Scholar 

  • Oldfield SR, Parker SPA (1984b) Acuity of sound localization: a topography of auditory space, II. Pinna cues absent. Perception 13:601–617

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL (1984a) Neuron types in the central nucleus of the inferior colliculus that project to the medial geniculate body. Neuroscience 11:409–424

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL (1984b) Dorsal cochlear nucleus projections to the inferior colliculus in the cat: a light and electron microscopic study. J Comp Neurol 224:155–172

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Hall WC (1978) The medial geniculate body of the tree shrew, Tupaiaglis. I. Cytoarchitecture and midbrain connections. J Comp Neurol 182:423–458

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Morest DK (1979) Cochlear nucleus projections to the inferior colliculus of the cat studied with light and electron microscopic autoradiography. Soc Neurosci Abstr 5:27

    Google Scholar 

  • Oliver DL, Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J Comp Neurol 222:237–264

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Potashner SJ, Jones DR, Morest DK (1983) Selective labeling of spiral ganglion and granule cells with D-aspartate in the auditory system of cat and guinea pig. J Neurosci 3:455–472

    PubMed  CAS  Google Scholar 

  • Ollo C, Schwartz IR (1979) The superior olivary complex in C57BL/6 mice. Am J Anat 155:349–374

    Article  PubMed  CAS  Google Scholar 

  • Osen KK (1969a) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136:453–484

    Article  PubMed  CAS  Google Scholar 

  • Osen KK (1969b) The intrinsic organization of the cochlear nuclei in the cat. Acta Otolaryngol (Stockh) 67:352–359

    Article  CAS  Google Scholar 

  • Osen KK (1970) Course and termination of the primary afferents in the cochlear nuclei of the cat. An experimental anatomical study. Arch Ital Biol 108:21–51

    PubMed  CAS  Google Scholar 

  • Osen KK (1972) Projection of the cochlear nuclei on the inferior colliculus in the cat. J Comp Neurol 144:355–372

    Article  PubMed  CAS  Google Scholar 

  • Osen KK (1983) Orientation of dendritic arbors studied in Golgi sections of the cat dorsal cochlear nucleus. In: Webster WR, Aitkin LM (eds) Mechanisms of hearing. Monash University Press, Clayton, pp 83–89

    Google Scholar 

  • Osen KK, Jansen J (1965) The cochlear nuclei in the common porpoise, Phocaena phocae-na. J Comp Neurol 125:223–258

    Article  Google Scholar 

  • Osen KK, Mugnaini E (1981) Neuronal circuits in the dorsal cochlear nucleus. In: Syka J, Aitkin L (eds) Neuronal mechanisms of hearing. Plenum, New York, pp 119–125

    Google Scholar 

  • Osen KK, Roth K (1969) Histochemical localization of cholinesterases in the cochlear nuclei of the cat. With notes on the origin of acetylcholinesterase-positive afferents and the superior olive. Brain Res 16:165–185

    Article  PubMed  CAS  Google Scholar 

  • Osen KK, Mugnaini E, Dahl AL, Christiansen AH (1984) Histochemicarlocalization of acetylcholinesterase in the cochlear and superior olivary nuclei. A reappraisal with emphasis on the cochlear granule cell system. Arch Ital Biol 122:169–212

    PubMed  CAS  Google Scholar 

  • Palay SL (1967) Principles of cellular organization in the nervous system. In: Quarton GC, Melnechuk T, Schmitt FO (eds) The Neurosciences-a study program. Rockefeller University Press, New York, pp 24–31

    Google Scholar 

  • Palmer AR, Evans EF (1979) On the peripheral coding of the level of individual frequency components of complex sounds at high sound levels. In: Creutzfeldt O, Scheich H, Schreiner C (eds) Hearing mechanisms and speech. Springer, Berlin Heidelberg New York, pp 19–26

    Chapter  Google Scholar 

  • Palmer AR, Evans EF (1982) Intensity coding in the auditory periphery of the cat: responses of cochlear nerve and cochlear nucleus neurons to signals in the presence of band-stop masking noise. Hear Res 7:305–323

    Article  PubMed  CAS  Google Scholar 

  • Palmer AR, King AJ (1982) The representation of auditory space in the mammalian superior colliculus. Nature 299:248–249

    Article  PubMed  CAS  Google Scholar 

  • Palmer AR, King AJ (1983) Monaural and binaural contributions to an auditory space map in the guinea-pig superior colliculus. In: Klinke R, Hartmann R (eds) Hearing: physiological bases and psychophysics. Springer, Berlin Heidelberg New York, pp 230–236

    Google Scholar 

  • Paula-Barbosa MM, Sousa-Pinto A (1973) Auditory cortical projections to the superior colliculus in the cat. Brain Res 50:47–61

    Article  PubMed  CAS  Google Scholar 

  • Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54:535–573

    PubMed  CAS  Google Scholar 

  • Perkins RE (1973) An electron microscopic study of synaptic organization in the medial superior olive of normal and experimental chinchillas. J Comp Neurol 148:387–416

    Article  PubMed  CAS  Google Scholar 

  • Perry DR (1974) Acoustic responses of cells in deep superior eolliculus of rabbit. Proc Aust Physiol Pharmacol Soc 5:237–238

    Google Scholar 

  • Perry DR, Webster WR (1981) Neuronal organization of the rabbit cochlear nucleus: some anatomical and electrophysiological observations. J Comp Neurol 197:623–638

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Palay SL, Webster H de F (1976) The fine structure of the nervous system: the neurons and supporting cells. Saunders, Philadelphia

    Google Scholar 

  • Pfalz R (1973) Efferent crossed inhibition in the ventral cochlear nuclei. In: Moller AR (ed) Basic mechanisms in hearing. Academic, New York, pp 773–784

    Google Scholar 

  • Pfalz RKJ (1962) Centrifugal inhibition of afferent secondary neurons in the cochlear nucleus by sound. J Acoust Soc Am 34:1472–1477

    Article  Google Scholar 

  • Pfeiffer RR (1966 a) Classification of response patterns of spike discharges for units in the cochlear nucleus: tone-burst stimulation. Exp Brain Res 1:220–235

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer RR (1966b) Anteroventral cochlear nucleus: waveforms of extracellularly recorded spike potentials. Science 154:667–668

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer RR, Kiang NYS (1965) Spike discharge patterns of spontaneous and continuously stimulated activity in the cochlear nucleus of anesthetized cats. Biophys J 5:301–316

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer RR, Kim DO (1972) Response patterns of single cochlear nerve fibers to click stimuli: descriptions for cat. J Acoust Soc Am 52:1669–1677

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer RR, Kim DO (1975) Cochlear nerve fiber responses: distribution along the cochlear partition. J Acoust Soc Am 58:867–869

    Article  PubMed  CAS  Google Scholar 

  • Phillips DP, Brugge JF (1985) Progress in neurophysiology of sound localization. Annu Rev Psychol 36:245–274

    Article  PubMed  CAS  Google Scholar 

  • Phillips DP, Gates GR (1982) Representation of the two ears in the auditory cortex: a reexamination. Int J Neurosci 16:41–46

    Article  PubMed  CAS  Google Scholar 

  • Phillips DP, Irvine DRF (1979) Methodological considerations in mapping auditory cortex: binaural columns in AI of cat. Brain Res 161:342–346

    Article  PubMed  CAS  Google Scholar 

  • Phillips DP, Irvine DRF (1981a) Responses of single neurons in physiologically defined primary auditory cortex (AI) of the cat: frequency tuning and responses to intensity. J Neurophysiol 45:48–58

    PubMed  CAS  Google Scholar 

  • Phillips DP, Irvine DRF (1981b) Responses of single neurons in physiologically defined area AI of cat cerebral cortex: sensitivity to interaural intensity differences. Hear Res 4:299–307

    Article  PubMed  CAS  Google Scholar 

  • Phillips DP, Irvine DRF (1983) Some features of binaural input to single neurons in physiologically defined area AI of cat cerebral cortex. J Neurophysiol 49:383–395

    PubMed  CAS  Google Scholar 

  • Phillips DP, Orman SS (1984) Responses of single neurons in posterior field of cat auditory cortex to tonal stimulation. J Neurophysiol 51:147–163

    PubMed  CAS  Google Scholar 

  • Phillips DP, Calford MB, Pettigrew JD, Aitkin LM, Semple MN (1982) Directionality of sound pressure transformation at the cat’s pinna. Hear Res 8:13–28

    Article  PubMed  CAS  Google Scholar 

  • Plomp R (1964) The ear as a frequency analyzer. J Acoust Soc Am 36:1628–1636

    Article  Google Scholar 

  • Poggio GF (1979) Mechanisms of stereopsis in monkey visual cortex. Trends Neurosci 2:199–201

    Article  Google Scholar 

  • Poggio GF, Fischer B (1977) Binocular interaction and depth sensitivity in striate and pre-striate cortex of behaving rhesus monkey. J Neurophysiol 40:1392–1405

    PubMed  CAS  Google Scholar 

  • Poggio GF, Poggio T (1984) The analysis of stereopsis. Annu Rev Neurosci 7:379–412

    Article  PubMed  CAS  Google Scholar 

  • Poggio GF, Talbot WH (1981) Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey. J Physiol (Lond) 315:469–492

    CAS  Google Scholar 

  • Poljak S (1926) The connections of the acoustic nerve. J Anat 60:465–469

    Google Scholar 

  • Pollack GD (1980) Organizational and encoding features of single neurons in the inferior colliculus of bats. In: Busnel R-G, Fis JF (eds) Animal sonar systems. Plenum, New York, pp 549–587

    Google Scholar 

  • Pollack GD, Marsh DS, Bodenhamer R, Souther A (1978) A single-unit analysis of inferior colliculus in unanesthetized bats: response patterns and spike-count functions generated by constant-frequency and frequency-modulated sounds. J Neurophysiol 41:677–691

    Google Scholar 

  • Popelář J, Syka J (1982) Response properties of neurons in the inferior colliculus of the guinea pig. Acta Neurobiol Exp (Warsz) 42:299–310

    Google Scholar 

  • Pöppel E (1973) Comment on “Visual system’s view of acoustic space”. Nature 243:231

    Article  PubMed  Google Scholar 

  • Poussin C, Schlegel P (1984) Directional sensitivity of auditory neurons in the superior colliculus of the bat, Eptesicus fuscus, using free field sound stimulation. J Comp Physiol A 154:253–261

    Article  Google Scholar 

  • Powell EW, Hatton JB (1969) Projections of the inferior colliculus in cat. J Comp Neurol 136:183–192

    Article  PubMed  CAS  Google Scholar 

  • Powell TPS, Cowan WM (1962) An experimental study of the projection of the cochlea. J Anat 96:269–284

    PubMed  CAS  Google Scholar 

  • Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: Reiss RF (ed) Neural theory and modeling. Proceedings of the 1962 Ojai symposium. Stanford University Press, Stanford, pp 73–97

    Google Scholar 

  • Ramon y Cajal S (1909) Histologie du système nerveux de l’homme et des vertebres. Maloine, Paris

    Google Scholar 

  • Rassmussen GL (1960) Efferent fibers of the cochlear nerve and cochlear nucleus. In: Rasmussen GL, Windle WE (eds) Neural mechanisms of the auditory and vestibular systems. Thomas, Springfield, pp 105–115

    Google Scholar 

  • Rasmussen GL (1964) Anatomic relationships of the ascending and descending auditory systems. In: Fields WS, Alford BR (eds) Neurological aspects of auditory and vestibular disorders. Thomas, Springfield, pp 1–19

    Google Scholar 

  • Rasmussen GL (1967) Efferent connections of the cochlear nucleus. In: Graham AB (ed) Sensorineural hearing processes and disorders. Little Brown, Boston, pp 61–75

    Google Scholar 

  • Rauschecker JP, Harris LR (1983) Auditory compensation of the effects of visual deprivation in the cat’s superior colliculus. Exp Brain Res 50:69–83

    Article  PubMed  CAS  Google Scholar 

  • Reale RA, Geisler CD (1980) Auditory-nerve fiber encoding of two-tone approximations to steady-state vowels. J Acoust Soc Am 67:891–902

    Article  PubMed  CAS  Google Scholar 

  • Regan D (1982) Visual information channeling in normal and disordered vision. Psychol Rev 89:407–444

    Article  PubMed  CAS  Google Scholar 

  • Regan D, Tansley BW (1979) Selective adaptation to frequency-modulated tones: evidence for an information-processing channel selectively sensitive to frequency changes. J Acoust Soc Am 65:1249–1257

    Article  PubMed  CAS  Google Scholar 

  • Rhode WS (1976) A digital system for auditory neurophysiological research. In: Brown P (ed) Current computer technology in neurobiology. Hemisphere, Washington, pp 543–567

    Google Scholar 

  • Rhode WS, Geisler CD, Kennedy DT (1978) Auditory nerve fiber responses to wide-band noise and tone combinations. J Neurophysiol 41:692–704

    PubMed  CAS  Google Scholar 

  • Rhode WS, Kettner R (1986) Physiological study of neurons in the dorsal and posteroventral cochlear nucleus of the unanesthetized cat. J Neurophysiol (in press)

    Google Scholar 

  • Rhode WS, Smith PH (1985) Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers. Hear Res 18:159–168

    Article  PubMed  CAS  Google Scholar 

  • Rhode WS, Smith PH (1986a) Encoding timing and intensity in the ventral cochlear nucleus of the cat. J Neurophysiol (in press)

    Google Scholar 

  • Rhode WS, Smith PH (1986b) Physiological studies of neurons in the dorsal cochlear nucleus of cat. J Neurophysiol (in press)

    Google Scholar 

  • Rhode WS, Smith PH, Oertel D (1983 a) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus. J Comp Neurol 213:426–447

    Article  PubMed  CAS  Google Scholar 

  • Rhode WS, Oertel D, Smith PH (1983 b) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. J Comp Neurol 213:448–463

    Article  PubMed  CAS  Google Scholar 

  • Ribaupierre F de, Rouiller E, Toros A, Ribaupierre Y de (1980) Transmission delay of phase-locked cells in the medial geniculate body. Hear Res 3:65–77

    Article  PubMed  Google Scholar 

  • Richards W (1970) Stereopsis and stereoblindness. Exp Brain Res 10:380–388

    Article  PubMed  CAS  Google Scholar 

  • Richards W (1971) Anomalous stereoscopic depth perception. J Opt Soc Am 61:410–414

    Article  PubMed  CAS  Google Scholar 

  • Ritz LA, Brownell WE (1982) Single unit analysis of the posteroventral cochlear nucleus of the decerebrate cat. Neuroscience 7:1995–2010

    Article  PubMed  CAS  Google Scholar 

  • RoBards MJ (1979) Somatic neurons in the brain stem and neocortex projecting to the external nucleus of the inferior colliculus: an anatomical study in the opossum. J Comp Neurol 184:547–566

    Article  PubMed  CAS  Google Scholar 

  • RoBards MJ, Watkins DW III, Masterton RB (1976) An anatomical study of some somes-thetic afferents to the intercollicular terminal zone of the midbrain of the opossum. J Comp Neurol 170:499–524

    Article  PubMed  CAS  Google Scholar 

  • Robertson D (1984) Horseradish peroxidase injection of physiologically characterized afferent and efferent neurones in the guinea pig spiral ganglion. Hear Res 15:113–121

    Article  PubMed  CAS  Google Scholar 

  • Robertson D, Cody AR, Bredberg G, Johnstone BM (1980) Response properties of spiral ganglion neurons in cochleas damaged by direct mechanical trauma. J Acoust Soc Am 67:1295–1303

    Article  PubMed  CAS  Google Scholar 

  • Robinson D (1972) Eye movements evoked by collicular stimulation in the alert monkey. Vision Res 12:1795–1808

    Article  PubMed  CAS  Google Scholar 

  • Rockel AJ, Jones EG (1973 a) The neuronal organization of the inferior colliculus of the adult cat. I. The central nucleus. J Comp Neurol 147:11–60

    Article  PubMed  CAS  Google Scholar 

  • Rockel AJ, Jones EG (1973 b) Observations on the fine structure of the central nucleus of the inferior colliculus of the cat. J Comp Neurol 147:61–92

    Article  PubMed  CAS  Google Scholar 

  • Rockel AJ, Jones EG (1973 c) The neuronal organization of the inferior colliculus of the adult cat. II. The pericentral nucleus. J Comp Neurol 149:301–334

    Article  PubMed  CAS  Google Scholar 

  • Rodieck RW, Brening RK (1983) Retinal ganglion cells: properties, types, genera, pathways and trans-species comparisons. Brain Behav Evol 23:121–164

    Article  PubMed  CAS  Google Scholar 

  • Rodieck RW, Kiang NYS, Gerstein GL (1962) Some quantitative methods for the study of spontaneous activity of single neurons. Biophys J 2:351–368

    Article  PubMed  CAS  Google Scholar 

  • Roffler SK, Butler RA (1968 a) Factors that influence the localization of sound in the vertical plane. J Acoust Soc Am 43:1255–1259

    Article  PubMed  CAS  Google Scholar 

  • Roffler SK, Butler RA (1968 b) Localization of tonal stimuli in the vertical plane. J Acoust Soc Am 43:1260–1266

    Article  PubMed  CAS  Google Scholar 

  • Romand R (1978) Survey of intracellular recording in the cochlear nucleus of the cat. Brain Res 148:43–65

    Article  PubMed  CAS  Google Scholar 

  • Romand R (1979) Intracellular recording of “chopper responses” in the cochlear nucleus of the cat. Hear Res 1:95–99

    Article  PubMed  CAS  Google Scholar 

  • Rose JE (1960) Organization of frequency sensitive neurons in the cochlear nuclear complex of the cat. In: Rasmussen GL, Windle WF (eds) Neural mechanisms of the auditory and vestibular systems. Thomas, Springfield, pp 116–136

    Google Scholar 

  • Rose JE (1960) Organization of frequency sensitive neurons in the cochlear nuclear complex of the cat. In: Rasmussen GL, Windle WF (eds) Neural mechanisms of the auditory and vestibular systems. Thomas, Springfield, pp 116–136

    Google Scholar 

  • Rose JE, Galambos R, Hughes JR (1959) Microelectrode studies of the cochlear nuclei of the cat. Bull Johns Hopkins Hosp 104:211–251

    PubMed  CAS  Google Scholar 

  • Rose JE, Greenwood DD, Goldberg JM, Hind JE (1963) Some discharge characteristics of single neurons in the inferior colliculus of the cat. I. Tonotopical organization, relation of spike-counts to tone intensity, and firing patterns of single elements. J Neurophysiol 26:294–320

    Google Scholar 

  • Rose JE, Gross NB, Geisler CD, Hind JE (1966) Some neural mechanisms in the inferior colliculus of the cat which may be relevant to localization of a sound source. J Neurophysiol 29:288–314

    PubMed  CAS  Google Scholar 

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:769–793

    PubMed  CAS  Google Scholar 

  • Rose JE, Hind JE, Anderson DJ, Brugge JF (1971) Some effects of stimulus intensity on response of auditory nerve fibers in the squirrel monkey. J Neurophysiol 34:685–699

    PubMed  CAS  Google Scholar 

  • Rose JE, Kitzes LM, Morton Gibson M, Hind JE (1974) Observations on phase-sensitive neurons of anteroventral cochlear nucleus of the cat: nonlinearity of cochlear output. J Neurophysiol 37:218–253

    PubMed  CAS  Google Scholar 

  • Roth GL, Aitkin LM, Andersen RA, Merzenich MM (1978) Some features of the spatial organization of the central nucleus of the inferior colliculus of the cat. J Comp Neurol 182:661–680

    Article  PubMed  CAS  Google Scholar 

  • Roth GL, Kochhar RK, Hind JE (1980) Interaural time differences: implications regarding the neurophysiology of sound localization. J Acoust Soc Am 68:1643–1651

    Article  PubMed  CAS  Google Scholar 

  • Roucoux A, Crommelinck M (1976) Eye movements evoked by superior colliculus stimulation in the alert cat. Brain Res 106:349–363

    Article  PubMed  CAS  Google Scholar 

  • Rouiller EM, Ryugo DK (1984) Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat. J Comp Neurol 225:167–186

    Article  PubMed  CAS  Google Scholar 

  • Rowe MH, Stone J (1977) Naming of neurones. Classification and naming of cat retinal ganglion cells. Brain Behav Evol 14:185–216

    Article  PubMed  CAS  Google Scholar 

  • Rowe MH, Stone J (1979) The importance of knowing our own presuppositions. Brain Behav Evol 16:65–80

    Article  PubMed  CAS  Google Scholar 

  • Rowe MH, Stone J (1980) Parametric and feature extraction analyses of the receptive fields of visual neurones. Two streams of thought in the study of a sensory pathway. Brain Behav Evol 17:103–122

    Article  PubMed  CAS  Google Scholar 

  • Ruggero M, Santi PA, Rich NC (1982) Type II cochlear ganglion cells in the chinchilla. Hear Res 8:339–356

    Article  PubMed  CAS  Google Scholar 

  • Ruggero MA (1973) Response to noise of auditory nerve fibers in the squirrel monkey. J Neurophysiol 36:569–587

    PubMed  CAS  Google Scholar 

  • Rupert AL, Moushegian G (1970) Neuronal responses of kangaroo rat ventral cochlear nucleus to low-frequency tones. Exp Neurol 26:84–102

    Article  PubMed  CAS  Google Scholar 

  • Ryan A, Miller J (1977) Effects of behavioral performance on single-unit firing patterns in inferior colliculus of the rhesus monkey. J Neurophysiol 40:943–956

    PubMed  CAS  Google Scholar 

  • Ryan A, Miller J (1978) Single unit responses in the inferior colliculus of the awake and performing rhesus monkey. Exp Brain Res 32:389–407

    Article  PubMed  CAS  Google Scholar 

  • Ryan AF, Woolf NK, Sharp FR (1982) Tonotopic organization in the central auditory pathway of the Mongolian gerbil: a 2-deoxyglucose study. J Comp Neurol 207:369–380

    Article  PubMed  CAS  Google Scholar 

  • Ryugo DK, Fekete DM (1982) Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: a study of the endbulbs of Held. J Comp Neurol 210:239–257

    Article  PubMed  CAS  Google Scholar 

  • Ryugo D, Willard FH, Fekete DM (1981) Differential afferent projections to the inferior colliculus from the cochlear nucleus in the albino mouse. Brain Res 210:342–349

    Article  PubMed  CAS  Google Scholar 

  • Sachs MB (1969) Stimulus-response relation for auditory-nerve fibers: two-tone stimuli. J Acoust Soc Am 45:1025–1036

    Article  PubMed  CAS  Google Scholar 

  • Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J Acoust Soc Am 56:1835–1847

    Article  PubMed  CAS  Google Scholar 

  • Sachs MB, Kiang NYS (1968) Two-tone inhibition in auditory-nerve fibers. J Acoust Soc Am 43:1120–1128

    Article  PubMed  CAS  Google Scholar 

  • Sachs MB, Young ED (1979) Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. J Acoust Soc Am 66:470–479

    Article  PubMed  CAS  Google Scholar 

  • Sachs MB, Young ED, Schalk TB, Bernardin CP (1980) Suppression effects in the responses of auditory-nerve fibers to broadband stimuli. In: van den Brink G, Bilsen FA (eds) Psychophysical, physiological and behavioural studies in hearing. Delft University Press, Delft, pp 284–291

    Google Scholar 

  • Sachs MB, Voigt HF, Young ED (1983) Auditory nerve representation of vowels in background noise. J Neurophysiol 50:27–45

    PubMed  CAS  Google Scholar 

  • Sanchez-Longo LP, Forster FM (1958) Clinical significance of impairment of sound localization. Neurology (NY) 8:119–125

    CAS  Google Scholar 

  • Sandel TT, Teas DC, Feddersen WE, Jeffress LA (1955) Localization of sound from single and paired sources. J Acoust Soc Am 27:842–852

    Article  Google Scholar 

  • Sando I (1965) The anatomical interrelationships of the cochlear nerve fibers. Acta Otolaryngol (Stockh) 59:417–436

    Article  Google Scholar 

  • Sayers BMcA, Cherry EC (1957) Mechanism of binaural fusion in the hearing of speech. J Acoust Soc Am 29:973–987

    Article  Google Scholar 

  • Schaefer KP (1970) Unit analysis and electrical stimulation in the optic tectum of rabbits and cats. Brain Behav Evol 3:222–240

    Article  PubMed  CAS  Google Scholar 

  • Schaefer KP, Schneider H (1968) Reizversuche im Tectum opticum des Kaninchens. Ein experimenteller Beitrag zur sensomotorischen Koordination des Hirnstammes. Archiv Psychiat u Zeits ges Neurol 211:118–137

    Article  CAS  Google Scholar 

  • Schalk TB, Sachs MB (1980) Nonlinearities in auditory-nerve fiber responses to bandlimited noise. J Acoust Soc Am 67:903–913

    Article  PubMed  CAS  Google Scholar 

  • Shankweiler DP (1961) Performance of brain-damaged patients on two tests of sound localization. J Comp Physiol Psychol 54:375–381

    Article  Google Scholar 

  • Scheibel ME, Scheibel AB (1974) Neuropil organization in the superior olive of the cat. Exp Neurol 43:339–348

    Article  PubMed  CAS  Google Scholar 

  • Schiller PH, Sandell JH (1983) Interactions between visually and electrically elicited sac-cades before and after superior colliculus and frontal eye field ablations in the rhesus monkey. Exp Brain Res 49:381–392

    Article  PubMed  CAS  Google Scholar 

  • Schiller PH, Stryker M (1972) Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J Neurophysiol 35:915–924

    PubMed  CAS  Google Scholar 

  • Schiller PH, True SD, Conway JL (1980) Deficits in eye movements following frontal eye-field and superior colliculus ablations. J Neurophysiol 44:1175–1189

    PubMed  CAS  Google Scholar 

  • Schlegel P (1977) Directional coding by binaural brainstem units of the CF-FM bat, Rhi-nolophus ferrumequinum. J Comp Physiol A 118:327–352

    Article  Google Scholar 

  • Schmiedt RA (1982) Boundaries of two-tone rate suppression of cochlear-nerve activity. Hear Res 7:335–351

    Article  PubMed  CAS  Google Scholar 

  • Schneider GE (1967) Contrasting visuomotor functions of tectum and cortex in the golden hamster. Psychol Forsch 31:52–62

    Article  PubMed  CAS  Google Scholar 

  • Schneider GE (1969) Two visual systems. Science 163:895–902

    Article  PubMed  CAS  Google Scholar 

  • Schneider GE (1970) Mechanisms of functional recovery following lesions of visual cortex or superior colliculus in neonate and adult hamsters. Brain Behav Evol 3:295–323

    Article  PubMed  CAS  Google Scholar 

  • Schouten MEH (1980) The case against a speech mode of perception. Acta Psychol (Amst) 44:71–98

    Article  CAS  Google Scholar 

  • Schwartz IR (1972) Axonal endings in the cat medial superior olive: coated vesicles and intercellular substance. Brain Res 46:187–202

    Article  PubMed  CAS  Google Scholar 

  • Schwartz IR (1977) Dendritic arrangements in the cat medial superior olive. Neuroscience 2:81–101

    Article  PubMed  CAS  Google Scholar 

  • Schwartz IR (1980) The differential distribution of synaptic terminal on marginal and central cells in the cat medial superior olivary nucleus. Am J Anat 159:25–31

    Article  PubMed  CAS  Google Scholar 

  • Schwartz IR (1984) Axonal organization in the cat medial superior olivary nucleus. In: Neff WD (ed) Contributions to sensory physiology, vol 8. Academic, New York, pp 99–129

    Google Scholar 

  • Schwartz WJ, Smith CB, Davidsen L, Savaki H, Sokoloff L, Mata M, Fink DJ, Gainer H (1979) Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science 205:723–725

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer H (1981) The connections of the inferior colliculus and the organization of the brainstem auditory system in the greater horseshoe bat (Rhinolophus ferrumequinum). J Comp Neurol 201:25–49

    Article  Google Scholar 

  • Searle CL, Braida LD, Cuddy DR, Davis MF (1975) Binaural pinna disparity: Another auditory localization cue. J Acoust Soc Am 57:448–455

    Article  PubMed  CAS  Google Scholar 

  • Searle CL, Braida LD, Davis MF, Colburn HS (1976) Model for auditory localization. J Acoust Soc Am 60:1164–1175

    Article  PubMed  CAS  Google Scholar 

  • Segal MM (1983) Specification of synaptic action. Trends Neurosci 6:118–121

    Article  Google Scholar 

  • Semple MN, Aitkin LM (1979) Representation of sound frequency and laterality by units in central nucleus of cat inferior colliculus. J Neurophysiol 42:1626–1639

    PubMed  CAS  Google Scholar 

  • Semple MN, Aitkin LM (1980) Physiology of pathway from dorsal cochlear nucleus to inferior colliculus revealed by electrical and auditory stimulation. Exp Brain Res 41:19–28

    Article  PubMed  CAS  Google Scholar 

  • Semple MN, Aitkin LM (1981) Integration and segregation of input to the cat inferior colliculus. In: Syka J, Aitkin L (eds) Neuronal mechanisms of hearing. Plenum, New York, pp 155–161

    Google Scholar 

  • Semple MN, Kitzes LM (1984) Sensitivity of single units in the gerbil inferior colliculus to interaural intensity differences at different average binaural levels. Proc Neurosci Abstr 10:1148

    Google Scholar 

  • Semple MN, Kitzes LM (1985) Single-unit responses in the inferior colliculus: different consequences of contralateral and ipsilateral auditory stimulation. J Neurophysiol 53:1467–1482

    PubMed  CAS  Google Scholar 

  • Semple MN, Aitkin LM, Calford MB, Pettigrew JD, Phillips DP (1983) Spatial receptive fields in the cat inferior colliculus. Hear Res 10:203–215

    Article  PubMed  CAS  Google Scholar 

  • Servière J, Webster WR (1981) A combined electrophysiological and [14C]2-deoxyglucose study of the frequency organization of the inferior colliculus of the cat. Neurosci Lett 27:113–118

    Article  PubMed  Google Scholar 

  • Servière J, Webster WR, Calford MB (1984) Iso-frequency labelling revealed by a combined [14C]-2-deoxyglucose, electrophysiological, and horseradish peroxidase study of the inferior colliculus of the cat. J Comp Neurol 228:463–477

    Article  PubMed  Google Scholar 

  • Shaw EAG (1974a) Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. J Acoust Soc Am 56:1848–1861

    Article  PubMed  CAS  Google Scholar 

  • Shaw EAG (1974b) The external ear. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology, vol V. Auditory system, part 1. Springer, Berlin Heidelberg New York, pp 455–490

    Google Scholar 

  • Shaw EAG (1982) External ear response and sound localization. In: Gatehouse RW (ed) Localization of sound: theory and applications. Amphora, Groton, pp 30–41

    Google Scholar 

  • Shaw EAG, Teranishi R (1968) Sound pressure generated in an external-ear replica and real human ears by a nearby point source. J Acoust Soc Am 44:240–249

    Article  PubMed  CAS  Google Scholar 

  • Shimozawa T, Suga N, Hendler P, Schuetze S (1974) Directional sensitivity of echolocation system in bats producing frequency modulated signals. J Exp Biol 60:53–69

    PubMed  CAS  Google Scholar 

  • Shimozawa T, Sun X, Jen PHS (1984) Auditory space representation in the superior colliculus of the big brown bat, Eptesicus fuscus. Brain Res 311:289–296

    Article  PubMed  CAS  Google Scholar 

  • Siebert WM (1965) Some implications of the stochastic behavior of primary auditory neurons. Kybernetik 2:206–215

    Article  PubMed  CAS  Google Scholar 

  • Siebert WM (1968) Stimulus transformations in the peripheral auditory system. In: Kolers PA, Eden M (eds) Recognizing patterns. MIT, Cambridge, pp 104–133

    Google Scholar 

  • Siebert WM (1970) Frequency discrimination in the auditory system: place or periodicity mechanisms? Proc IEEE 58:723–730

    Article  Google Scholar 

  • Siegel JH, Kim DO (1982) Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res 6:171–182

    Article  PubMed  CAS  Google Scholar 

  • Silverman MS, Clopton BM (1977) Plasticity of binaural interaction. I. Effect of early auditory deprivation. J Neurophysiol 40:1266–1274

    PubMed  CAS  Google Scholar 

  • Sinex DG, Geisler CD (1981) Auditory-nerve fiber responses to frequency-modulated tones. Hear Res 4:127–148

    Article  PubMed  CAS  Google Scholar 

  • Sinex DG, Geisler CD (1983) Responses of auditory-nerve fibers to consonant-vowel syllables. J Acoust Soc Am 73:602–615

    Article  PubMed  CAS  Google Scholar 

  • Sinex DG, Geisler CD (1984) Comparison of the responses of auditory nerve fibers to consonant-vowel syllables with predictions from linear models. J Acoust Soc Am 76:116–121

    Article  PubMed  CAS  Google Scholar 

  • Smith PH, Rhode WS (1985) Electron microscopic features of physiologically characterized, HRP-labeled fusiform cells in the cat dorsal cochlear nucleus. J Comp Neurol 237:127–143

    Article  PubMed  CAS  Google Scholar 

  • Smith RL, Brachman ML (1980a) Dynamic responses of single auditory-nerve fibers: some effects of intensity and time. In: van den Brink G, Bilsen FA (eds) Psychophysical, physiological and behavioural studies in hearing. Delft University Press, Delft, pp 312–319

    Google Scholar 

  • Smith RL, Brachman ML (1980b) Operating range and maximum response of single auditory nerve fibres. Brain Res 184:499–505

    Article  PubMed  CAS  Google Scholar 

  • Smolders JWT, Aertsen AMH, Johannesma PIM (1979) Neural representation of the acoustic biotope. Biol Cybernetics 35:11–20

    Article  CAS  Google Scholar 

  • Smoorenburg GF, Morton Gibson M, Kitzes LM, Rose JE, Hind JE (1976) Correlates of combination tones observed in the response of neurons in the anteroventral cochlear nucleus of the cat. J Acoust Soc Am 59:945–962

    Article  PubMed  CAS  Google Scholar 

  • Sparks DL, Holland R, Guthrie BL (1976) Size and distribution of movement fields in the monkey superior colliculus. Brain Res 113:21–34

    Article  PubMed  CAS  Google Scholar 

  • Sparks DL, Mays LE (1981) The role of the monkey superior colliculus in the control of saccadic eye movements: a current perspective. In: Fuchs A, Becker W (eds) Progress in oculomotor research. Elsevier, New York, pp 137–144

    Google Scholar 

  • Sparks DL, Mays LE (1983) Spatial localization of saccade targets. I. Compensation for stimulus-induced perturbations in eye position. J Neurophysiol 49:45–63

    PubMed  CAS  Google Scholar 

  • Sparks DL, Pollack JG (1977) The neural control of saccadic eye movements: the role of the superior colliculus. In: Brooks BA, Bajandos FJ (eds) Eye movements-ARVO Symposium 1976. Plenum, New York, pp 179–219

    Google Scholar 

  • Sparks DL, Porter JD (1983) Spatial localization of saccade targets. II. Activity of superior colliculus neurons preceding compensatory saccades. J Neurophysiol 49:64–74

    PubMed  CAS  Google Scholar 

  • Spoendlin H (1969) Innervation patterns in the organ of Corti of the cat. Acta Otolaryngol (Stockh) 67:239–254

    Article  PubMed  CAS  Google Scholar 

  • Spoendlin H (1971) Degeneration behaviour of the cochlear nerve. Arch klin exp Ohr-Nas-u Kehlk Heilk 200:275–291

    Article  CAS  Google Scholar 

  • Spoendlin H (1978) The afferent innervation of the cochlea. In: Naunton RF, Fernandez C (eds) Evoked electrical activity in the auditory nervous system. Academic, New York, pp 21–39

    Google Scholar 

  • Spoendlin H (1979) Neural connections of the outer haircell system. Acta Otolaryngol (Stockh) 87:381–387

    Article  PubMed  CAS  Google Scholar 

  • Sprague JM, Meikle TH (1965) The role of the superior colliculus in visually guided behavior. Exp Neurol 11:115–146

    Article  PubMed  CAS  Google Scholar 

  • Sprague JM, Levitt M, Robson K, Liu CN, Stellar E, Chambers WW (1963) A neuroana-tomical and behavioral analysis of the syndromes resulting from midbrain lemniscal and reticular lesions in the cat. Arch Ital Biol 101:225–295

    PubMed  CAS  Google Scholar 

  • Srulovicz P, Goldstein JL (1983) A central spectrum model: a synthesis of auditory-nerve timing and place cues in monaural communication of frequency spectrum. J Acoust Soc Am 73:1266–1276

    Article  PubMed  CAS  Google Scholar 

  • Starr A, Britt R (1970) Intracellular recordings from cat cochlear nucleus during tone stimulation. J Neurophysiol 33:137–147

    PubMed  CAS  Google Scholar 

  • Starr A, Wernick JS (1968) Olivocochlear bundle stimulation: effects on spontaneous and tone-evoked activities of single units in cat cochlear nucleus. J Neurophysiol 31:549–564

    PubMed  CAS  Google Scholar 

  • Stein BE, Arigbede MO (1972) Unimodal and multimodal response properties of neurons in the cat’s superior colliculus. Exp Neurol 36:179–196

    Article  PubMed  CAS  Google Scholar 

  • Stein BE, Clamann HP (1981) Control of pinna movements and sensorimotor register in cat superior colliculus. Brain Behav Evol 19:180–192

    Article  PubMed  CAS  Google Scholar 

  • Stein BE, Dixon JP (1979) Properties of superior colliculus neurons in the golden hamster. J Comp Neurol 2:269–284

    Article  Google Scholar 

  • Stein BE, Goldberg SJ, Clamann HP (1976) The control of eye movements by the superior colliculus in the alert cat. Brain Res 118:469–474

    Article  PubMed  CAS  Google Scholar 

  • Stein BE, Spencer RF, Edwards SB (1983) Corticotectal and corticothalamic efferent projections of SIV somatosensory cortex in cat. J Neurophysiol 50:896–909

    PubMed  CAS  Google Scholar 

  • Stern RM Jr, Colburn HS (1978) Theory of binaural interaction based on auditory-nerve data. IV. A model for subjective lateral position. J Acoust Soc Am 64:127–140

    Article  PubMed  Google Scholar 

  • Stern RM Jr, Colburn HS (1985) Lateral-position-based models of interaural discrimination. J Acoust Soc Am 77:753–755

    Article  PubMed  Google Scholar 

  • Stevens KN (1980) Acoustic correlates of some phonetic categories. J Acoust Soc Am 68:836–842

    Article  PubMed  CAS  Google Scholar 

  • Stevens KN (1981) Constraints imposed by the auditory system on the properties used to classify speech sounds: data from phonology, acoustics, and psychoacoustics. In: Myers T, Laver J, Anderson J (eds) The cognitive representation of speech. Elsevier, Amsterdam, pp 61–74

    Chapter  Google Scholar 

  • Stevens KN, House AS (1972) Speech perception. In: Tobias JV (ed) Foundations of modern auditory theory, vol II. Academic, New York, pp 3–62

    Google Scholar 

  • Stevens SS, Newman EB (1936) The localization of actual sources of sound. Am J Psychol 48:297–306

    Article  Google Scholar 

  • Stillman RD (1971a) Characteristic delay neurons in the inferior colliculus of the kangaroo rat. Exp Neurol 32:404–412

    Article  PubMed  CAS  Google Scholar 

  • Stillman RD (1971b) Pattern responses of low-frequency inferior colliculus neurons. Exp Neurol 33:432–440

    Article  PubMed  CAS  Google Scholar 

  • Stillman RD (1972) Responses of high-frequency inferior colliculus neurons to interaural intensity differences. Exp Neurol 36:118–126

    Article  PubMed  CAS  Google Scholar 

  • Stone J (1983) Parallel processing in the visual system. The classification of retinal ganglion cells and its impact on the neurobiology of vision. Plenum, New York

    Google Scholar 

  • Stopp PE (1983) The distribution of the olivo-cochlear bundle and its possible role in frequency/intensity coding. In: Klinke R, Hartmann R (eds) Hearing-physiological bases and psychophysics. Springer, Berlin Heidelberg New York Tokyo, pp 176–180

    Google Scholar 

  • Stotler WA (1953) An experimental study of the cells and connections of the superior olivary complex of the cat. J Comp Neurol 98:401–431

    Article  PubMed  CAS  Google Scholar 

  • Straschill M, Rieger P (1973) Eye movements evoked by focal stimulation of the cat’s superior colliculus. Brain Res 59:211–227

    Article  PubMed  CAS  Google Scholar 

  • Strominger NL (1978) The anatomical organization of the primate auditory pathway. In: Noback CR (ed) Sensory systems of primates. Plenum, New York, pp 53–91

    Google Scholar 

  • Strominger NL, Oesterreich RE (1970) Localization of sound after section of the brachium of the inferior colliculus. J Comp Neurol 138:1–18

    Article  PubMed  CAS  Google Scholar 

  • Strominger NL, Strominger AI (1971) Ascending brain stem projections of the anteroven-tral cochlear nucleus in the rhesus monkey. J Comp Neurol 143:217–242

    Article  PubMed  CAS  Google Scholar 

  • Strutz J (1981) Efferent innervation of the cochlea. Ann Otol 90:158–160

    CAS  Google Scholar 

  • Strutz J, Bielenberg K (1984) Efferent acoustic neurons within the lateral superior olivary nucleus of the guinea pig. Brain Res 299:174–177

    Article  PubMed  CAS  Google Scholar 

  • Strutz J, Spatz WB (1980) Superior olivary and extraolivary origin of centrifugal innervation of the cochlea in the guinea pig. A horseradish peroxidase study. Neurosci Lett 17:227–230

    Article  PubMed  CAS  Google Scholar 

  • Strybel TZ, Perrott DR (1984) Discrimination of relative distance in the auditory modality: the success and failure of the loudness discrimination hypothesis. J Acoust Soc Am 76:318–320

    Article  PubMed  CAS  Google Scholar 

  • Stryker M, Blakemore C (1972) Saccadic and disjunctive eye movements in cats. Vision Res 12:2005–2013

    Article  PubMed  CAS  Google Scholar 

  • Suga N (1964) Single unit activity in cochlear nucleus and inferior colliculus of echo-locating bats. J Physiol (Lond) 172:449–474

    PubMed  CAS  Google Scholar 

  • Suga N (1968) Analysis of frequency-modulated and complex sounds by single auditory neurones of bats. J Physiol (Lond) 198:51–80

    PubMed  CAS  Google Scholar 

  • Suga N (1971) Feature detection in the cochlear nucleus, inferior colliculus, and auditory cortex. In: Sachs MB (ed) Physiology of the auditory system. NEC, Baltimore, pp 197–206

    Google Scholar 

  • Suga N (1977) Amplitude spectrum representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science 196:64–67

    Article  PubMed  CAS  Google Scholar 

  • Suga N, Schlegel P (1973) Coding and processing in the auditory systems of FM-signal-producing bats. J Acoust Soc Am 54:174–190

    Article  PubMed  CAS  Google Scholar 

  • Sullivan WE (1985) Classification of response patterns in cochlear nucleus of barn owl: correlation with functional response properties. J Neurophysiol 53:201–216

    PubMed  CAS  Google Scholar 

  • Sullivan WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4:1787–1799

    PubMed  CAS  Google Scholar 

  • Syka J, Radii-Weiss T (1971) Electrical stimulation of the tectum in freely moving cats. Brain Res 28:567–572

    Article  PubMed  CAS  Google Scholar 

  • Syka J, Straschill M (1970) Activation of superior colliculus neurons and motor responses after electrical stimulation of the inferior colliculus. Exp Neurol 28:384–392

    Article  PubMed  CAS  Google Scholar 

  • Syka J, Radionova EA, Popelář J (1981) Discharge characteristics of neuronal pairs in the rabbit inferior colliculus. Exp Brain Res 44:11–18

    Article  PubMed  CAS  Google Scholar 

  • Syka J, Popelář J, Druga R (1983) Structure and function of crossed and uncrossed pathways to the inferior colliculus in the rat. In: Klinke R, Hartmann R (eds) Hearing-physiological bases and psychophysics. Springer, Berlin Heidelberg New York, pp 224–229

    Google Scholar 

  • Szentagothai J, Arbib MA (1975) Conceptual models of neural organization. MIT, Cambridge

    Google Scholar 

  • Taber E (1961) The cytoarchitecture of the brain stem of the cat. J Comp Neurol 116:27–70

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Moiseff A, Konishi M (1984) Time and intensity cues are processed independently in the auditory system of the owl. J Neurosci 4:1781–1786

    PubMed  CAS  Google Scholar 

  • Terhune JM (1974) Sound localization abilities of untrained humans using complex and sinusoidal sounds. Scand Audiol 3:115–120

    Article  Google Scholar 

  • Theurich M, Müller CM, Scheich H (1984) 2-Deoxyglucose accumulation parallels extra-cellularly recorded spike activity in the avian auditory neostriatum. Brain Res 322:157–161

    Article  PubMed  CAS  Google Scholar 

  • Thompson GC, Masterton RB (1978) Brain stem auditory pathways involved in reflexive head orientation to sound. J Neurophysiol 41:1183–1202

    PubMed  CAS  Google Scholar 

  • Thompson RF (1960) Function of auditory cortex of cat in frequency discrimination. J Neurophysiol 23:321–334

    PubMed  CAS  Google Scholar 

  • Thurlow WR, Mangels JW, Runge PS (1967) Head movements during sound localization. J Acoust Soc Am 42:489–493

    Article  PubMed  CAS  Google Scholar 

  • Thurlow WR, Runge PS (1967) Effect of induced head movements on localization of direction of sounds. J Acoust Soc Am 42:480–488

    Article  PubMed  CAS  Google Scholar 

  • Tiao YC, Blakemore C (1976) Functional organization in the superior colliculus of the golden hamster. J Comp Neurol 168:483–503

    Article  PubMed  CAS  Google Scholar 

  • Tobias JV, Zerlin S (1959) Lateralization threshold as a function of stimulus duration. J Acoust Soc Am 31:1591–1594

    Article  Google Scholar 

  • Tolbert LP, Morest DK (1982a) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Golgi and Nissl methods. Neuroscience 7:3013–3030

    Article  PubMed  CAS  Google Scholar 

  • Tolbert LP, Morest DK (1982b) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: electron microscopy. Neuroscience 7:3053–3067

    Article  PubMed  CAS  Google Scholar 

  • Tolbert LP, Morest DK, Yurgelun-Todd DA (1982) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: horseradish peroxidase labelling of identified cell types. Neuroscience 7:3031–3052

    Article  PubMed  CAS  Google Scholar 

  • Tortelly A, Reinoso-Suarez F, Llamas A (1980) Projections from non-visual cortical areas to the superior colliculus demonstrated by retrograde transport of HRP in the cat. Brain Res 188:543–549

    Article  PubMed  CAS  Google Scholar 

  • Tsuchitani C (1977) Functional organization of lateral cell groups of cat superior olivary complex. J Neurophysiol 40:296–318

    PubMed  CAS  Google Scholar 

  • Tsuchitani C (1978) Lower auditory brainstem structures of the cat. In: Naunton RF, Fernandez C (eds) Evoked electrical activity in the auditory nervous system. Academic, New York, pp 373–401

    Google Scholar 

  • Tsuchitani C (1982) Discharge patterns of cat lateral superior olivary units to ipsilateral tone-burst stimuli. J Neurophysiol 47:479–500

    PubMed  CAS  Google Scholar 

  • Tsuchitani C, Boudreau JC (1964) Wave activity in the superior olivary complex of the cat. J Neurophysiol 27:814–827

    PubMed  CAS  Google Scholar 

  • Tsuchitani C, Boudreau JC (1966) Single unit analysis of cat superior olive S segment with tonal stimuli. J Neurophysiol 29:684–697

    PubMed  CAS  Google Scholar 

  • Tsuchitani C, Boudreau JC (1967) Encoding of stimulus frequency and intensity by cat superior olive S-segment cells. J Acoust Soc Am 42:794–805

    Article  PubMed  CAS  Google Scholar 

  • Tsuchitani C, Boudreau JC (1969) Stimulus level of dichotically presented tones and cat superior olive S-segment cell discharge. J Acoust Soc Am 46:979–988

    Article  PubMed  CAS  Google Scholar 

  • Tsuchitani C, Johnson DH (1985) The effects of ipsilateral tone burst stimulus level on the discharge patterns of cat lateral superior olivary units. J Acoust Soc Am 77: 1484–1496

    Article  PubMed  CAS  Google Scholar 

  • Tunkl JE (1980) Location of auditory and visual stimuli in cats with superior colliculus ablations. Exp Neurol 68:395–402

    Article  PubMed  CAS  Google Scholar 

  • Tyner CF (1975) The naming of neurons: applications of taxonomic theory to the study of cellular populations. Brain Behav Evol 12:75–96

    Article  PubMed  CAS  Google Scholar 

  • Uchizono K (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207:642–643

    Article  PubMed  CAS  Google Scholar 

  • Uchizono K (1967) Synaptic organization of the Purkinje cells in the cerebellum of the cat. Exp Brain Res 4:97–113

    Article  PubMed  CAS  Google Scholar 

  • Updyke BV (1974) Characteristics of unit responses in superior colliculus of the Cebus monkey. J Neurophysiol 37:896–909

    PubMed  CAS  Google Scholar 

  • Vater M (1982) Single unit responses in cochlear nucleus of horseshoe bats to sinusoidal frequency and amplitude modulated signals. J Comp Physiol A 149:369–388

    Article  Google Scholar 

  • Vater M, Schlegel P, Zöller H (1979) Comparative auditory neurophysiology of the inferior collieulus of two molossid bats, Molossus ater and Molossus molossus. I. Gross evoked potentials and single unit responses to pure tones. J Comp Physiol A 131:137–145

    Article  Google Scholar 

  • Viemeister NF (1974) Intensity discrimination of noise in the presence of band-reject noise. J Acoust Soc Am 56:1594–1600

    Article  PubMed  CAS  Google Scholar 

  • Viemeister NF (1983) Auditory intensity discrimination at high frequencies in the presence of noise. Science 221:1206–1208

    Article  PubMed  CAS  Google Scholar 

  • Voigt HF, Young ED (1980) Evidence of inhibitory interactions between neurons in dorsal cochlear nucleus. J Neurophysiol 44:76–96

    PubMed  CAS  Google Scholar 

  • Wakeford OS, Robinson DE (1974) Lateralization of tonal stimuli by the cat. J Acoust Soc Am 55:649–652

    Article  PubMed  CAS  Google Scholar 

  • Walberg F (1965) An electron microscopic study of terminal degeneration in the inferior olive of the cat. J Comp Neurol 125:205–222

    Article  PubMed  CAS  Google Scholar 

  • Wallach H (1939) On sound localization. J Acoust Soc Am 10:270–274

    Article  Google Scholar 

  • Walsh BT, Miller JB, Gacek RR, Kiang NYS (1972) Spontaneous activity in the eighth cranial nerve of the cat. Int J Neurosci 3:221–236

    Article  Google Scholar 

  • Walsh EG (1957) An investigation of sound localization in patients with neurological abnormalities. Brain 80:222–250

    Article  PubMed  CAS  Google Scholar 

  • Warr WB (1966) Fiber degeneration following lesions in the anterior ventral cochlear nucleus of the cat. Exp Neurol 14:453–474

    Article  PubMed  CAS  Google Scholar 

  • Warr WB (1969) Fiber degeneration following lesions in the posteroventral cochlear nucleus of the cat. Exp Neurol 23:140–155

    Article  PubMed  CAS  Google Scholar 

  • Warr WB (1972) Fiber degeneration following lesions in the multipolar and globular cell areas in the ventral cochlear nucleus of the cat. Brain Res 40:247–270

    Article  PubMed  CAS  Google Scholar 

  • Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161:159–182

    Article  PubMed  CAS  Google Scholar 

  • Warr WB (1982) Parallel ascending pathways from the cochlear nucleus: neuroanatomical evidence of functional specialization. In: Neff WD (ed) Contributions to sensory physiology, vol 7. Academic, New York, pp 1–38

    Google Scholar 

  • Warr WB, Guinan JJ Jr (1979) Efferent innervation of the organ of Corti: two separate systems. Brain Res 173:152–155

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Ohgushi K (1968) FM sensitive auditory neuron. Proc Japan Acad 44:968–973

    Google Scholar 

  • Watanabe T, Liao T-T, Katsuki Y (1968) Neuronal response patterns in the superior olivary complex of the cat to sound stimulation. Jpn J Physiol 18:267–287

    Article  PubMed  CAS  Google Scholar 

  • Watkins AJ (1978) Psychoacoustical aspects of synthesized vertical locale cues. J Acoust Soc Am 63:1152–1165

    Article  PubMed  CAS  Google Scholar 

  • Watkins AJ (1982) The monaural perception of azimuth: a synthesis approach. In: Gatehouse RW (ed) Localization of sound: theory and applications. Amphora, Groton, pp 194–206

    Google Scholar 

  • Webster DB, Trune DR (1982) Cochlear nucleus complex of mice. Am J Anat 163:103–130

    Article  PubMed  CAS  Google Scholar 

  • Webster WR (1977) Chopper units recorded in the cochlear nucleus of the awake cat. Neurosci Lett 7:261–265

    Article  Google Scholar 

  • Webster WR, Aitkin LM (1975) Central auditory processing. In: Gazzaniga MS, Blakemore C (eds) Handbook of psychobiology. Academic, New York, pp 325–364

    Google Scholar 

  • Webster WR, Servière J, Batini C, Laplante S (1978) Autoradiographic demonstration with [14C]-2-deoxyglucose of frequency selectivity in the auditory system of cats under conditions of functional activity. Neurosci Lett 10:43–48

    Article  PubMed  CAS  Google Scholar 

  • Webster WR, Servière J, Brown M (1984a) Inhibitory contours in the inferior colliculus as revealed by the 2-deoxyglucose method. Exp Brain Res 56:577–581

    PubMed  CAS  Google Scholar 

  • Webster WR, Servière J, Crewther D, Crewther S (1984b) Iso-frequency 2-DG contours in the inferior colliculus of the awake monkey. Exp Brain Res 56:427–437

    Google Scholar 

  • Webster WR, Servière J, Martin R, Brown M (1985) Uncrossed and crossed inhibition in the inferior colliculus of the cat: A combined 2-deoxyglucose and electrophysiological study. J Neurosci 5:1820–1832

    PubMed  CAS  Google Scholar 

  • Wenstrup JJ, Ross LS, Pollack GD (1985) A functional organization of binaural responses in the inferior colliculus. Hear Res 17:191–195

    Article  PubMed  CAS  Google Scholar 

  • Westerman LA, Smith RL (1984) Rapid and short-term adaptation in auditory nerve responses. Hear Res 15:249–260

    Article  PubMed  CAS  Google Scholar 

  • Wettschureck RG (1973) Die absoluten Unterschiedsschwellen der Richtungswahrnehmung in der Medianebene beim natürlichen Hören, sowie beim Hören über ein Kunstkopf-Übertragungssystem. Acustica 28:197–208

    Google Scholar 

  • Wever EG (1949) Theory of hearing. Wiley, New York

    Google Scholar 

  • White JS, Warr WB (1983) The dual origins of the olivocochlear bundle in the albino rat. J Comp Neurol 219:203–214

    Article  PubMed  CAS  Google Scholar 

  • Whitfield IC (1967) The auditory pathway. Arnold, London

    Google Scholar 

  • Whitfield IC (1970) Central nervous processing in relation to spatio-temporal discrimination of auditory patterns. In: Plomp R, Smoorenberg GF (eds) Frequency analysis and periodicity detection in hearing. Sijthoff, Leiden, pp 136–152

    Google Scholar 

  • Whitley JM, Henkel CK (1984) Topographical organization of the inferior collicular projection and other connections of the ventral nucleus of the lateral lemniscus in the cat. J Comp Neurol 229:257–270

    Article  PubMed  CAS  Google Scholar 

  • Whittington DA, Hepp-Reymond M-C, Flood W (1981) Eye and head movements to auditory targets. Exp Brain Res 41:358–363

    Article  PubMed  CAS  Google Scholar 

  • Wickelgren BG (1971) Superior colliculus: some receptive field properties of bimodally responsive cells. Science 173:69–71

    Article  PubMed  CAS  Google Scholar 

  • Wiener FM (1947) On the diffraction of a progressive sound wave by the human head. J Acoust Soc Am 19:143–146

    Article  Google Scholar 

  • Wiener FM, Pfeiffer RR, Backus ASN (1966) On the sound pressure transformation by the head and auditory meatus of the cat. Acta Otolaryngol (Stockh) 61:255–269

    Article  PubMed  CAS  Google Scholar 

  • Wier CC, Jesteadt W, Green DM (1977) Frequency discrimination as a function of frequency and sensation level. J Acoust Soc Am 61:178–184

    Article  PubMed  CAS  Google Scholar 

  • Willard FH, Martin GF (1983) The auditory brainstem nuclei and some of their projections to the inferior colliculus in the North American opossum. Neuroscience 10:1203–1232

    Article  PubMed  CAS  Google Scholar 

  • Willard FH, Martin GF (1984) Collateral innervation of the inferior colliculus in the North American opossum: a study using fluorescent markers in a double-labeling paradigm. Brain Res 303:171–182

    Article  PubMed  CAS  Google Scholar 

  • Willard FH, Ryugo DK (1979) External nucleus of the inferior colliculus: a site of overlap for ascending auditory and somatosensory projections in the mouse. Soc Neurosci Abstr 5:33

    Google Scholar 

  • Willard FH, Ryugo DK (1983) Anatomy of the central auditory system. In: Willott JF (ed) The auditory psychobiology of the mouse. Thomas, Springfield, pp 201–304

    Google Scholar 

  • Willott JF (1983) Central nervous system physiology. In: Willott JF (ed) The auditory psychobiology of the mouse. Thomas, Springfield, pp 305–338

    Google Scholar 

  • Willott JF, Urban GP (1978) Response properties of neurons in nuclei of the mouse inferior colliculus. J Comp Physiol 127:175–184

    Article  Google Scholar 

  • Willott JF, Chalupa LM, Henry KR (1977) Responses of single units in the inferior colliculus of the mouse (Mus musculus) as a function of tone intensity. Exp Brain Res 28:443–448

    Article  PubMed  CAS  Google Scholar 

  • Wilson ME, Cragg BG (1969) Projections from the medial geniculate body to the cerebral cortex in the cat. Brain Res 13:462–475

    Article  PubMed  CAS  Google Scholar 

  • Wise LZ, Irvine DRF (1983) Auditory response properties of neurons in deep layers of cat superior colliculus. J Neurophysiol 49:674–685

    PubMed  CAS  Google Scholar 

  • Wise LZ, Irvine DRF (1984) Interaural intensity difference sensitivity based on facilitatory binaural interaction in cat superior colliculus. Hear Res 16:181–187

    Article  PubMed  CAS  Google Scholar 

  • Wise LZ, Irvine DRF (1985) Topographic organization of interaural intensity difference sensitivity in deep layers of cat superior colliculus: implications for auditory spatial representation. J Neurophysiol 54:185–211

    PubMed  CAS  Google Scholar 

  • Wise LZ, Irvine DRF, Pettigrew JD, Calford MB (1982) Auditory spatial receptive field properties of neurones in intermediate and deep layers of cat superior colliculus. Neurosci Letts Suppl 8:S88

    Google Scholar 

  • Wong D (1984) Spatial tuning of auditory neurons in the superior colliculus of the echolo-cating bat, Myotis lucifugus. Hear Res 16:261–270

    Article  PubMed  CAS  Google Scholar 

  • Woodworth RS (1938) Experimental psychology. Holt, New York

    Google Scholar 

  • Worden FG, Galambos R (1972) Auditory processing of biologically significant sounds. Neurosci Res Prog Bull 10:1–119

    CAS  Google Scholar 

  • Wortis SB, Pfeffer AZ (1948) Unilateral auditory-spatial agnosia. J Nerv Ment Dis 108:181–186

    Article  PubMed  CAS  Google Scholar 

  • Wouterlood FG, Mugnaini E (1984) Cartwheel neurons of the dorsal cochlear nucleus: a Golgi-electron microscopic study in rat. J Comp Neurol 227:136–157

    Article  PubMed  CAS  Google Scholar 

  • Wouterlood FG, Mugnaini E, Osen KK, Dahl AL (1984) Stellate neurons in rat dorsal cochlear nucleus studied with combined Golgi impregnation and electron microscopy: synaptic connections and mutual coupling by gap junctions. J Neurocytol 13:639–664

    Article  PubMed  CAS  Google Scholar 

  • Wright D, Hebrank JH, Wilson B (1974) Pinna reflections as cues for localization. J Acoust Soc Am 56:957–962

    Article  PubMed  CAS  Google Scholar 

  • Wu SH, Oertel D (1984) Intracellular injection with horseradish peroxidase of physiologically characterized stellate and bushy cells in slices of mouse anteroventral cochlear nucleus. J Neurosci 4:1577–1588

    PubMed  CAS  Google Scholar 

  • Yin TCT, Kuwada S (1983a) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase. J Neurophysiol 50:1000–1019

    PubMed  CAS  Google Scholar 

  • Yin TCT, Kuwada S (1983b) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. III. Effects of changing frequency. J Neurophysiol 50:1020–1042

    PubMed  CAS  Google Scholar 

  • Yin TCT, Kuwada S (1984) Neuronal mechanisms of binaural interaction. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic aspects of neocortical function. Wiley, New York, pp 263–313

    Google Scholar 

  • Yin TCT, Chan JCK, Kuwada S (1983) Characteristic delays and their topographical distribution in the inferior colliculus of the cat. In: Webster WR, Aitkin LM (eds) Mechanisms of hearing. Monash University Press, Clayton, pp 94–99

    Google Scholar 

  • Yin TCT, Kuwada S, Sujaku Y (1984) Interaural time sensitivity of high frequency neurons in the inferior colliculus. J Acoust Soc Am 76:1401–1410

    Article  PubMed  CAS  Google Scholar 

  • Yin TCT, Chan JCK, Irvine DRF (1986) Effects of interaural time delays of noise stimuli on low-frequency cells in the cat’s inferior colliculus. I. Responses to wide-band noise. J Neurophysiol 55:280–300

    PubMed  CAS  Google Scholar 

  • Yin TCT, Hirsch JA, Chan JCK (1985) Responses of neurons in the cat’s superior colliculus to acoustic stimuli. II. A model of interaural intensity sensitivity. J Neurophysiol 53:746–758

    PubMed  CAS  Google Scholar 

  • Yost WA (1974) Discrimination of interaural phase differences. J Acoust Soc Am 55:1299–1303

    Article  PubMed  CAS  Google Scholar 

  • Young ED (1980) Identification of response properties of ascending axons from dorsal cochlear nucleus. Brain Res 200:23–37

    Article  PubMed  CAS  Google Scholar 

  • Young ED, Brownell WE (1976) Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. J Neurophysiol 39:282–300

    PubMed  CAS  Google Scholar 

  • Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66:1381–1403

    Article  PubMed  CAS  Google Scholar 

  • Young ED, Sachs MB (1981) Processing of speech in the peripheral auditory system. In: Myers T, Laver J, Anderson J (eds) The cognitive representation of speech. North-Holland, Amsterdam, pp 75–93

    Chapter  Google Scholar 

  • Young ED, Voigt HF (1982) Response properties of type II and type III units in dorsal cochlear nucleus. Hear Res 6:153–169

    Article  PubMed  CAS  Google Scholar 

  • Zahn JR, Abel LA, Dell’Osso LF (1978) Audio-ocular response characteristics. Sens Proc 2:32–37

    CAS  Google Scholar 

  • Zambarbieri D, Schmid R, Magenes G, Prablanc C (1982) Saccadic responses evoked by presentation of visual and auditory targets. Exp Brain Res 47:417–427

    Article  PubMed  CAS  Google Scholar 

  • Zambarbieri D, Schmid R, Prablanc C, Magenes G (1981) Characteristics of eye movements evoked by the presentation of acoustic targets. In: Fuchs A, Becker W (eds) Progress in oculomotor research. Elsevier, New York, pp 559–566

    Google Scholar 

  • Zook JM, Casseday JH (1980) Identification of auditory centers in lower brain stem of echolocating bats: Evidence from injection of horseradish peroxidase into inferior colliculus. In: Wilson DE, Gardner AL (eds) Proceedings fifth international bat conference. Texas Tech, Lubbock, pp 51–59

    Google Scholar 

  • Zook JM, Casseday JH (1982a) Cytoarchitecture of auditory system in lower brainstem of the mustache bat, Pteronotus parnelli. J Comp Neurol 207:1–13

    Article  PubMed  CAS  Google Scholar 

  • Zook JM, Casseday JH (1982b) Origin of the ascending projections to the inferior colliculus in the mustache bat, Pteronotus parnelli. J Comp Neurol 207:14–28

    Article  PubMed  CAS  Google Scholar 

  • Zook JM, Winer JA, Pollak GD, Bodenhamer RD (1985) Topology of the central nucleus of the mustache bat’s inferior colliculus: correlation of single unit properties and neuronal architecture. J Comp Neurol 231:530–546

    Article  PubMed  CAS  Google Scholar 

  • Zvorykin VP (1964) Morphological substrate of ultrasonic and locational capacities in the dolphin. Fed Proc 23:T647–T654

    Google Scholar 

  • Zwicker E (1970) Masking and psychological excitation as consequences of the ear’s frequency analysis. In: Plomp R, Smoorenburg GF (eds) Frequency analysis and periodicity detection in hearing. Sijthoff, Leiden, pp 376–396

    Google Scholar 

  • Zwislocki J, Feldman RS (1956) Just-noticeable differences in dichotic phase. J Acoust Soc Am 28:860–864

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Irvine, D.R.F. (1986). References. In: The Auditory Brainstem. Progress in Sensory Physiology, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71057-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71057-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71059-9

  • Online ISBN: 978-3-642-71057-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics