Der Kalziumoxalatstein

  • R. Hautmann
  • W. Lutzeyer

Zusammenfassung

Die Oxalsäure ist eine relativ starke Dikarbonsäure mit pK-Werten von pKa1 = 1,46 und pKa2 = 4,40. Der Schmelzpunkt der Oxalsäure liegt bei 187 °C, das Dihydrat schmilzt unter Wasserabspaltung bei 100 °C. Oxalsäure bildet sowohl saure wie neutrale Salze, Mono- und Diester, ein Monoamid, das als oxamische Säure bekannt ist, weiterhin ein Diamid, das Oxamid. Das Molekulargewicht der Oxalsäure beträgt 90. Die freie Säure ist wenig wasserlöslich: Bei 20 °C lösen sich 8,7 g Oxalsäure in 100 g Wasser. Bei neutralem oder alkalischem pH bildet die Oxalsäure ein Kalziumsalz mit sehr niedriger Löslichkeit. Das Natriumsalz der Oxalsäure ist hingegen leicht löslich. Die Bedeutung des Kalziumoxalats für die menschliche Pathologie liegt ausschließlich in seiner schweren Löslichkeit. Bei einer mittleren Ionenstärke µ=0,30 des Harns ist das Löslichkeitsprodukt L des Kalziumoxalat-Monohydrats mit 1,0-10−7 berechnet worden. Das thermodynamische Löslichkeitsprodukt des Kalziumoxalats (µ=0) beträgt 3,0-10−9. Das Ionenprodukt des Kalziumoxalats (CaC2O4 · H2O) im Harn durchschnittlicher Zusammensetzung (µ=0,3; T=37 °C) beträgt bei pH 6,0 1,3 · 10−7 (Raaflaub 1963).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anderson L (1946) The origin; frequency and significance of microscopic calculi in the kidney. Surg Gynecol Obstet 82: 275–282PubMedGoogle Scholar
  2. Archer HE, Dormer AE, Scowen EF, Watts RWE (1957) Studies on the urinary excretion of oxalate by normal subjects. Clin Sci 16: 405–411PubMedGoogle Scholar
  3. Baadenhuijsen H, Jansen AP (1975) Colorimetric determination of urinary oxalate recovered as calcium oxalate. Application of a simple correction factor for incomplete precipitation. Clin Chim Acta 62: 315–324PubMedCrossRefGoogle Scholar
  4. Barillia DE, Townsend J, Pak CYC (1978) An exaggerated augmentation of renal calcium excretion after oral glucose ingestion in patients with renal hypercalciuria. Invest Urol 15: 486–488Google Scholar
  5. Bennett DJ, Cole FE, Frohlich ED, Erwin DT (1978) Radioenzymatic procedure for urinary oxalate determination. J Lab Clin Med 91: 822–830PubMedGoogle Scholar
  6. Binder HJ (1974) Intestinal oxalate absorption. Gastroenterology 67: 441–446PubMedGoogle Scholar
  7. Boyce WH, King JS (1959) Crystal matrix interrelations in calculi. J Urol 81: 351–365PubMedGoogle Scholar
  8. Boyce WH, Garvey K, Norfillt CM (1955) The metal chelate compounds of urine. Their relation to the imitation and growth of calculi. Am J Med 19: 87–94PubMedCrossRefGoogle Scholar
  9. Broadus AE (1977) Clinical cyclic nucleotide research. Adv Cyclic Nucleotide Res 8: 509–548PubMedGoogle Scholar
  10. Calkins VP (1943) Microdetermination of glycolic and oxalic acids. Ind Eng Chem Anal Ed 15: 762–763CrossRefGoogle Scholar
  11. Carr JR (1954) A new theory on the formation of renal calculi. Br J Urol 26: 105–117PubMedCrossRefGoogle Scholar
  12. Caspary WF (1979) Oxalaturolithiasis bei gastroenterologischen Erkrankungen: Pathogenese, Klinik und Therapie. Therapiewoche 29: 2158–2165Google Scholar
  13. Caspary WF, Graf S (1978) Bindung von Gallensauren an Antacida. Dtsch Med Wochenschr 103: 825–827PubMedCrossRefGoogle Scholar
  14. Cattel WR, Spencer AG, Taylor GW, Watts RWE (1962) The mechanism of the renal excretion of oxalate in the dog. Clin Sci 22: 43–52Google Scholar
  15. Coe FL (1978) Hyperuricosuric calcium oxalate nephrolithiasis. Kidney Int 13: 418–426PubMedCrossRefGoogle Scholar
  16. Cousin JL, Motais R (1976) The role of carbonic anhydrase inhibitors on anion permeability into red blood cells. J Physiol (Lond) 256: 61–80Google Scholar
  17. Deetjen P, Greger R, Lang F, Oberleithner H (1977) Die renale Behandlung von Oxalat, dem haufigsten Bestandteil von Harnkonkrementen. In: Gasser G, Vahlensieck W (Hrsg) Pathogenese und Klinik der Harnsteine V. Steinkopff Verlag, Darmstadt, pp l–6Google Scholar
  18. De Luca HF (1975) The kidney as an endocrine organ involved in the function of Vit. D. Am J Med. 58: 39–47CrossRefGoogle Scholar
  19. Dent CE, Harper MC, Parfitt AM (1964) The effect of cellulose phosphate on calcium metabolism in patients with hypercalciuria. Clin Sci 27: 417–425PubMedGoogle Scholar
  20. Deodhar SD, Tung KS, Zuhlke V, et al. (1969) Renal homotransplantation in a patient with primary familial oxalosis. Arch pathol. 87: 118–124PubMedGoogle Scholar
  21. Ditzel H (1977) Oxalsaureausscheidung im Urin von Gesunden und Harnsteinkranken. Habilitationsschrift, Universitat AachenGoogle Scholar
  22. Dobbins JW, Binder HJ (1976) Effect of bile salts and fatty acids on the colonic absorption of oxalate. Gastroenterology 70: 1096–1100PubMedGoogle Scholar
  23. Dodds EC, Gallimore EJ (1932) The determination of small quantities of oxalic acid. Biochem J 26: 1242PubMedGoogle Scholar
  24. Dosch W (1978) Mineralogische Grundlagen der Harnsteinbildung. Med Welt 29: 39–43PubMedGoogle Scholar
  25. Duburque MT, Melon JM, Thomas J, Thomas E, Pierre R, Charransol G, Desgrez P (1970) Dosage et identification de pacide oxalique dans les milieux biologique. I. Macromethode. Ann Biol Clin 28: 95–101Google Scholar
  26. Dulce HJ (1956) Untersuchungen iiber die Bedeutung der Schutzkolloide und Kristalloide fur die Loslichkeit von Calciumcalat im Harn. Z Physiol Chem 11: 445Google Scholar
  27. Dulce HJ (1958) Biochemie der Harnsteine. Urol Int 7: 137PubMedCrossRefGoogle Scholar
  28. Finlayson B (1977) Calcium stones, some physical and clinical aspects. In: David DJ (ed) Calcium metabolism in renal failure and nephrolithiasis. Wiley amp; Sons, New York Chichester, p 337Google Scholar
  29. Finlayson B (1978) Physicochemical aspects of urolithiasis. Kidney Int 13: 344–360PubMedCrossRefGoogle Scholar
  30. Finlayson B, Reid F (1978) The expectation of free and fixed particles in urinary stone disease. Invest Urol 15: 442–448PubMedGoogle Scholar
  31. Fleisch H (1978) Inhibitors and promoters of stone formation. Kidney Int 13: 361–371PubMedCrossRefGoogle Scholar
  32. Gambardella RL, Richardson KE (1977) The pathway of oxalate formation from phenylalanine, thyrosine, tryptophan and ascorbic acid in the rat. Biochim Biophys Acta 499: 156–168PubMedCrossRefGoogle Scholar
  33. Gibbs DA, Watts RWE (1966) An investigation of the possible role of xanthine-oxidan in the oxidation of glyoxylate to oxalate. Clin Sci 31: 285PubMedGoogle Scholar
  34. Gibbs DA, Watts RWE (1966) The identification of the enzymes that catalyse the oxydation of glyoxylate to oxalate in the 100000 g supernatant fraction of human hyper-oxaluric and control liver and heart tissue. Clin Sci 44: 221–241Google Scholar
  35. Greger R, Lang F, Oberleithner H, Deetjen P (1978) Handling of oxalate by the rat kidney. Pflugers Arch 374: 243–248PubMedCrossRefGoogle Scholar
  36. Haggit RC, Pitcock JA (1971) Renal medullary calcifications. A light and electron microscopic study. J Urol 106: 342Google Scholar
  37. Hallson PC, Rose GA (1974) A simplified and rapid enzymatic method for determination of urinary oxalate. Clin Chim Acta 55: 29PubMedCrossRefGoogle Scholar
  38. Hammarsten G (1927/28) Ca oxalate and its solubility in the presence of inorganic salts. Occurrence of oxaluria. C R Trav Lab Carlsberg 17: 53Google Scholar
  39. Hammarsten G (1929) On calcium oxalate and its solubility in the presence of inorganic salts, with special reference to the occurrence of oxaluria. C R Trav Lab Carlsberg 17: 1–85Google Scholar
  40. Hammarsten G (1956) On calcium oxalate stones. In: Butt AJ (ed) Etiologic factors in renal lithiasis. Thomas, Springfield, pp 89–109Google Scholar
  41. Haranda S, Saito S (1954) On the organic substances in urinary calculi. Jpn J Urol 45: 589Google Scholar
  42. Harris KS, Richardson KE (1980) Glycolate in the diet and it’s conversion to urinary oxalate in the rat. Invest Urol 18: 106PubMedGoogle Scholar
  43. Hasselbach W, Makinose M (1961) Die Calciumpumpe der „Erschlaffungsgrana” des Muskels und ihre Abhangigkeit von der ATP-Spaltung. Biochem Z 333: 518–528PubMedGoogle Scholar
  44. Hasselbach W, Weber HH (1974) Anion specific carriers in the sacroplasmic membranes. In: Azzone GF, Klingenberg ME, Quagliarello E, Siliprandi N (eds) Membrane proteins in transport and phosphorylation. North-Holland, Amsterdam, pp l03–lllGoogle Scholar
  45. Hatch M, Bourke E, Costello J (1977) New enzymic method for serum oxalate determination. Clin Chem 23: 76–78PubMedGoogle Scholar
  46. Hausman ER, McAnally JS, Lewis GT (1956) Determination of oxalate in urine. Clin Chem 2: 439–444PubMedGoogle Scholar
  47. Hautmann R, Osswald H (1978) Renal handling of oxalate. A micropuncture study in the rat. Naunyn Schmiedebergs Arch Pharmacol 304: 277–281PubMedCrossRefGoogle Scholar
  48. Hautmann R, Osswald H (1979) Pharmacokinetic studies of oxalate in man. Invest Urol 16: 395–398PubMedGoogle Scholar
  49. Hautmann R, Osswald H, Lutzeyer W ( 1976 a) New aspects in urinary oxalate excretion in man. In: Fleisch H, Robertson LH, Smith LH, Vahlensieck W (eds) Urolithiasis research. Plenum, London New York, p389CrossRefGoogle Scholar
  50. Hautmann R, Hering F, Terhorst B, Lutzeyer W (1976 b) Neue Gesichtspunkte in der Behandlung des Oxalatsteinleidens. Urologe [A] 15:148–152Google Scholar
  51. Hautmann R, Hering FJ, Lutzeyer W (1978) Effects and side effects of cellulose phosphate and succinate in long-term treatment of hypercalciuria or hyperoxaluria. J Urol 120: 712–715PubMedGoogle Scholar
  52. Hautmann R, Lehmann A, Komor S (1980) Calcium and oxalate concentrations in human kidney tissue: The key to the pathogenesis of stone formation? J Urol 123: 317–319PubMedGoogle Scholar
  53. Hesse A, Bach D, Strenge A, Hicking W, Vahlensieck W (1980) The effect of dietary oxalate loads on urinary oxalate excretion. In: Alan Rose G, Robertson WG, Watts RWE (eds) Oxalate in human biochemistry and clinical pathology. Proceedings of an international meeting in London, 1979. Wellcome Foundation, LondonGoogle Scholar
  54. Hockaday TDR, Frederick EW, Clayton JE, Smith LH (1965) Studies on primary hyperoxaluria. II. Urinary oxalate, glycolate and glyoxylate measurement by isotope dilution methods. J Lab Clin Med 65: 677–687PubMedGoogle Scholar
  55. Hodgkinson A (1974) Relations between oxalic acid, calcium, magnesium and creatinine excretion in normal man and male patients with calcium oxalate kidney stones. Clin Sci 46: 357–367Google Scholar
  56. Hodgkinson A (1977) Oxalic acid in biology and medicine. Academic Press, London New YorkGoogle Scholar
  57. Hodgkinson A, Wilkinson R (1974) Plasma oxalate concentration and renal excretion of oxalate in man. Clin Sci 46: 61–73Google Scholar
  58. Hodgkinson A, Zarembski PM (1968) Oxalic acid metabolism in man: A review. Calcif Tissue Res 2: 115–132PubMedCrossRefGoogle Scholar
  59. Hofmann AF, Poley JR (1972) Role of bile acid malabsorption in pathogenesis of diarrhea and steatorrhea in patients with ileal resection. I. Response to cholestyramine or replacement of dietary long chain triglyceride by medium chain triglyceride. Gastroenterology 62: 918PubMedGoogle Scholar
  60. Jahansson S, Tabova R (1974) Determination of oxalic and glycolic acid with isotope dilution methods and studies on the determination of glyoxylic acid. Biochem Med 11: 1–9CrossRefGoogle Scholar
  61. Keutel HJ, Hermann G, Licht WB (1959) Immunoelektrophoretische Untersuchungen iiber den serumidentischen Anteil der Harnkolloide und ihre Bedeutung bei der Harnsteinbildung. Clin Chem Acta 4: 665CrossRefGoogle Scholar
  62. King JSt (1971) Currents in renal stone research. Clin Chem 17: 971Google Scholar
  63. Klauwers J, Wolf PL, Cohn R (1969) Failure of renal transplantation in primary oxalosis. JAMA 209: 551PubMedCrossRefGoogle Scholar
  64. Knappworst A, Matouschek E (1967) Loslichkeit von Apatiden in Zitratpuffern und Losbarkeit von Phosphat-Nierensteinen. Naturwissenschaften 54: 367CrossRefGoogle Scholar
  65. Knowles CF, Hodgkinson A (1972) Automated enzymic determination of oxalic acid in human serum. Analyst 97: 474–481CrossRefGoogle Scholar
  66. Koch FE (1950) Experimentelle Untersuchungen iiber die Nierensteinbildung (Sonder- heft).Z Urol 1: 110Google Scholar
  67. Koch FE (1951) Weitere Untersuchungsergebnisse zur Frage der Nierensteinbildung. Med Welt 20: 876PubMedGoogle Scholar
  68. Lee KS, Samuelson O (1967) Anion exchange chromatography of organic acids in magnesium acetate medium. Anal Chim Acta 37: 359–363CrossRefGoogle Scholar
  69. Liao LL, Richardson KE (1973) The inhibition of oxalate biosynthesis in isolated perfused rat liver by DL-phenyllactate and n-heptanoate. Arch Biochem Biophys 154: 68–75PubMedCrossRefGoogle Scholar
  70. Mayer GG, Markow D, Karp F (1963) Enzymatic oxalate determination in urine. Clin Chem 9: 334–339PubMedGoogle Scholar
  71. Mcintosh GH, Belling GB (1975) An isotope study of the oxalate excretion in sheep. Aust J Exp Biol Med Sci 53: 475–487Google Scholar
  72. Menache R (1974) Routine micromethod for determination of oxalid acid in urine by atomic absorption spectrophotometry. Clin Chem 20: 1444–1448PubMedGoogle Scholar
  73. Nordin BEC, Peacock M (1973) Hypercalciuria. In: Urinary Calculi. Int Symp Renal Stone Res, Madrid 1972. Karger, Basel pp ll9–129Google Scholar
  74. Pak CYC (1973) Sodium cellulose phosphate: Mechanism of action and effect on mineral metabolism. J Pharmacol 1: 15–27Google Scholar
  75. Pak CYC (1976) Idiopathic renal lithiasis: New developments in evaluation and treatment. In: Fleisch H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis research. Plenum Press, New York London, pp 213–228CrossRefGoogle Scholar
  76. Parsons V (1973) Divalent ion metabolism and the kidney. Nephron 10: 157PubMedCrossRefGoogle Scholar
  77. Pitts RF (1974) Physiology of the kidney and body fluids. Medical Book Publishers, ChicagoGoogle Scholar
  78. Pinto B, Bernshtam J (1978) Diethylaminoethanol-cellulose in the treatment of absorptive hyperoxaluria. Urology 119: 630–632Google Scholar
  79. Pinto B, Paternain JL (1978) Oxalate transport by the human small intestine. Invest Urol 15: 502–506PubMedGoogle Scholar
  80. Pinto B, Crespi G, Sole-Balcells F, Barcelo P (1974) Patterns of oxalate metabolism in recurrent oxalate stone formers. Kidney Int 5: 285–291PubMedCrossRefGoogle Scholar
  81. Prien EL (1975) The riddle of randall’s plaques. J Urol 114: 500–507PubMedGoogle Scholar
  82. Raaflaub J (1963) Komplexchemische Grundlagen der Harnsteingenese. Helv Med Acta 30: 724–755Google Scholar
  83. Randall A (1936) Hypothesis for origin of renal calculus. N Engl J Med 214: 234CrossRefGoogle Scholar
  84. Randall A (1940) Papillary pathology as a precursor of primary renal calculus. J Urol 44: 580–589Google Scholar
  85. Ribeiro ME, Elliot JS (1964) Direct enzymatic determination of urinary oxalate. Invest Urol 2: 78–83PubMedGoogle Scholar
  86. Richardson KE (1964) Effect of testosterone on the glycolic acid oxidase levels in male and female rat liver. Endocrinology 74: 128–32PubMedCrossRefGoogle Scholar
  87. Richardson KE (1973) The effect of partial hepatectomy on the toxicity of ethylene glycol, glycolic acid, glyoxylic acid and glycerine. Toxicol Appl Pharmacol 24: 530–8PubMedCrossRefGoogle Scholar
  88. Richardson KE, Farinelli MP (1981) The pathways of oxalate biosynthesis. In: Smith LH, Robertson WG, Finlayson B (eds) Urolithiasis. Plenum Press, New York London, pp 855–863Google Scholar
  89. Robertson WG (1976) Physical chemical aspects of calcium stoneformation in the urinary tract. In: Fleisch H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis research. Plenum Press, New York London, pp 25–39CrossRefGoogle Scholar
  90. Rosenow EC (1940) Renal calculi: A study of papillary calcification. J Urol 44: 19Google Scholar
  91. Schneider HJ (1979) Organisation, Aufgabe und Wirkung einer Harnsteinambulanz. Therapiewoche 29: 2188–2198Google Scholar
  92. Schwarz G (1965) Der Calcium-Phosphat-Stoffwechsel. In: Opitz H, Schmid F (Hrsg) Stoffwechsel, Ernahrung, Verdauung. Springer, Berlin Heidelberg New York (Hand- buch der Kinderheilkunde, Bd4, S305–315 )Google Scholar
  93. Shigematsu SH (1957) Elektronenmikroskopische Betrachtung uber die Entstehung der Nierensteine. VEB Thieme, Leipzig, S 289–292Google Scholar
  94. Smith LH (1978) Calcium-containing renal stones. Kidney Int 13: 383–389PubMedCrossRefGoogle Scholar
  95. Sommerkamp H (1977) Diagnostik der renalen tubularen Azidose. In: Vahlensieck W, Gasser G (Hrsg) Pathogenese und Klinik der Harnsteine. Steinkopff, Darmstadt, S339–341Google Scholar
  96. Staemmler M (1958) Diskussion. Symposion „Formale Steingenese”, Koln. Urol Int 7: 129Google Scholar
  97. Stewart HH (1955) Calcification and calculus formation in the upper urinary tract. Br J Urol 27: 352PubMedCrossRefGoogle Scholar
  98. Terhorst B, Liibke W (1971) Untersuchungen tiber den Serum- und Urinspiegel von Magnesium. Z Urol 64: 649–655Google Scholar
  99. Terhorst B, Lutzeyer W (1972) Moglichkeiten der medikamentosen Oxalatsteinprophy-laxe. ZUrol 65: 815–825Google Scholar
  100. Thomas DW, Edwards JB, Gilligan JE, Lawrence JR (1972) Complications following intravenous administration of solutions containing xylitol. Med J Austr 1: 1238–1248Google Scholar
  101. Thomas W (1978) Use of phosphates in patients with calcareous renal calculi. Kidney Int13: 390–396Google Scholar
  102. Vermeulen CW, Lyon ES, Gill WB, Chapman WH (1959) Prevention of phosphate stones by phytate, phosphate and hexametaphosphate: Environmental urolithiasis XV. Urology 82: 249Google Scholar
  103. Vermooten V (1937) Occurence of renal calculi and their possible relation to diet as illustrated in the South African negro. JAMA 109: 857Google Scholar
  104. Vittu C, Lemahieu JC (1965) Determination de proxalurie par methode polarographique. Ann Biol Clin 23: 913–923Google Scholar
  105. Watts RWE (1976) Oxalate biosynthesis and the primary hyperoxaluria syndromes. In: Fleisch H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis research. Plenum, New York London, pp 189–196CrossRefGoogle Scholar
  106. Weinman EJ, Frankfurt SJ, Ince A, Sansom S (1978) Renal tubular transport of organic acids. Clin Invest 61: 801–806CrossRefGoogle Scholar
  107. Williams HE (1976) Oxalic acid: Absorption, excretion and metabolism. In: Fleisch H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis research. Plenum, New York London, pp 181–188CrossRefGoogle Scholar
  108. Williams HE (1978) Oxalic acid and the hyperoxaluric syndromes. Kidney Int 13: 410–417PubMedCrossRefGoogle Scholar
  109. Williams HE, Smith LH (1971) Hyperoxaluria ML- glycericaciduria: possible pathoge-netic mechanism. Science 171: 390–1PubMedCrossRefGoogle Scholar
  110. Williams HE, Smith LH (1975) Primary hyperoxaluria. In: Stanbury PB, Wyngaarden PB, Fredrickson DS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, pp 196–219Google Scholar
  111. Williams HE, Smith LH (1978) In: Stanbury PB, Wyngaarden PB, Fredrickson DS (eds) The metabolic basis of inherited disease. McGraw-Hill, New York, ppGoogle Scholar
  112. Williams HE, Johnson GA, Smith LH (1971) The renal clearance of oxalate in normal subjects and patients with primary hyperoxaluria. Clin Sci 41: 213–218PubMedGoogle Scholar
  113. Yendt ER, Cohanim M (1978) Prevention of calcium stones with thiazides. Kidney Int 13: 397–409PubMedCrossRefGoogle Scholar
  114. Yendt ER, Guay GF, Garcia DA (1970) The use of thiazides in the prevention of renal calculi. Can Med Assoc J 102: 614–620PubMedGoogle Scholar
  115. Zarembski PM, Hodgkinson A (1963) The renal clearance of oxalic acid in normal subjects and in patients with primary hyperoxaluria. Invest Urol 1: 87–93PubMedGoogle Scholar
  116. Zarembski PM, Hodgkinson A (1965 a) The flourimetric microdetermination of glyoxylic acid in blood, urine and bacterial extracts. Biochem J 96: 218–223Google Scholar
  117. Zarembski PM, Hodgkinson A (1965 b) The flourimetric determination of oxalic acid in blood and other biological materials. Biochem J 96: 717–721Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • R. Hautmann
  • W. Lutzeyer

There are no affiliations available

Personalised recommendations