Advertisement

Formalgenese

  • W. Dosch

Zusammenfassung

Harnsteine sind innerhalb der Harnwege unter Einschluß von filmbildender organischer Substanz gebildete, vorzugsweise aus kristallinem Material bestehende Ablagerungen (Konkremente) von schwerlöslichen Harnbestandteilen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Achilles W (1984) Ein optisches Mikroverfahren zur Bestimmung relativer Kristallisationsgeschwindigkeiten (Gelkristallisationsverfahren). Neue Entwicklungen: Kristallisationskinetische Messung durch Mikroskop-Photometrie. Fortschr Urol Nephrol 22: 377–384Google Scholar
  2. Achilles W, Ulshöfer B (1984) Calculations of complex-chemical equilibria in urine: Estimate of stone formation risks and derivation of prophylactic measures. In: Schwille PO, Smith LH, Robertson WG, Vahlensieck W (eds) Urolithiasis and related clinical research. Plenum, New York, pp 777–780Google Scholar
  3. Achilles W, Cumme GA, Scheffel M (1976) Investigation of complex-chemical equilibria in urinary systems with respect to calcium oxalate formation. In: Fleisch H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis research. International Symposium, Davos. Plenum, New York, pp 229–236Google Scholar
  4. Achilles W, Mergner C, Simon M, Berg W, Schneider HJ (1980) Ein neues optisches Mikroverfahren zur Bestimmung von Kristallisationsgeschwindigkeiten. In: Schneider HJ, Bothor C (Hrsg) VI. Jenaer Harnsteinsymposium. Friedrich Schiller Universitát, Jena, S 61–68Google Scholar
  5. Achilles W, Mergner C, Simon M (1983) An optical micromethod for the determination of relative crystallisation rate of calcium oxalate in gels: Method and preliminary results. Urol Res 11: 87–91PubMedGoogle Scholar
  6. Achilles W, Schwille PO, Sigel A (1984) Kristallisationskinetische Messung der Bildung von Kalciumoxalat in unverdiinnten Harnproben mit dem Gelkristallisationsverfahren. Fortschr Urol Nephrol 22: 385–387Google Scholar
  7. Arends J, TenCate JM (1981) Tooth enamel remineralisation. J Cryst Growth 53: 135–147Google Scholar
  8. Arnott HJ (1982) Three systems of biomineralization in plants with comments on the associated organic matrix. In: Nancollas GH (ed) Biological mineralization and demineralization. Springer, Berlin Heidelberg New York (Dahlem Workshop Reports, vol 23, pp 199–218)Google Scholar
  9. Arthure H (1953) A large abdominal calculus. J Obstet Gynaecol Br Emp 60: 416PubMedGoogle Scholar
  10. Bastian HP, Gebhardt M, Vahlensieck W, Harting R (1976) Nucleation place for urinary calculi. In: Fleisch H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis research. International Symposium, Davos. Plenum, New York, pp 237–240Google Scholar
  11. Berg W, Schneider HJ, Hesse A (1976) Crystal-optical findings on calcium oxalate of uric concretions. In: Fleisch H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis research. International Symposium, Davos. Plenum, New York, pp 241–247Google Scholar
  12. Betts F, Blumenthal NC, Posner AS (1981) Bone mineralization. J Cryst Growth 53: 63–73Google Scholar
  13. Borden TA, Vermeulen CW (1966) The renal papilla in calcugenesis of oxamide stones. Invest Urol 4: 125PubMedGoogle Scholar
  14. Boyce WH (1968a) Organic matrix of native human urinary concretions. In: Hodgkinson A, Nordin BEC (eds) Proceedings of the renal stone research symposium held at Leeds, April 1968. Churchill, London, pp 93–104Google Scholar
  15. Boyce WH (1968 b) Organic matrix of human urinary concretions. Am J Med 45: 673–683Google Scholar
  16. Boyce WH (1972) Some observations on the ultrastructure of idiopathic human renal calculi. In: Finlayson B, Hench LL, Smith LH (eds) Urolithiasis, physical aspects, National Academy of Sciences, Washington, pp 97–127Google Scholar
  17. Boyce WH, Garvey FK (1956) The amount and nature of the organic matrix in urinary calculi: A review. J Urol 763: 213–229Google Scholar
  18. Boyce WH, King JS Jr (1959) Crystal-matrix interrelations in calculi. J Urol 813: 351–365Google Scholar
  19. Boyce WH, King JS Jr (1963) Present concepts concerning the origin of matrix and stones. Ann NY Acad Sci 104: 563–578PubMedGoogle Scholar
  20. Boyce WH, Garvey FK, Norfleet CM (1954) Ion-binding properties of electrophoretically homogeneous mucoproteins of urine in normal subjects and in patients with renal calculous disease. J Urol 72: 1019–1031PubMedGoogle Scholar
  21. Boyce WH, Pool CS, Meschan I, King JS Jr (1958) Organic matrix of urinary calculi. Acta Radiol [Diagn] (Stockh) 50: 543–560Google Scholar
  22. Bülow H, Klee WE, Hotzel A, Frohmuller H (1977) Zur Frage der Harnsteinbildungnach Trimethoprim/Sulfamethoxazol-Therapie. Fortschr Urol Nephrol 9: 116–118Google Scholar
  23. Cammann K (1977) Das Arbeiten mit ionensensitiven Elektroden. Springer, Berlin Heidelberg New YorkGoogle Scholar
  24. Carr RJ (1968) Aetiology of renal calculi. Micro-radiographic studies. In: Hodgkinson A, Nordin BEC (eds) Proceedings of the renal stone research symposium held at Leeds, April 1968. Churchill, London, pp 123–132Google Scholar
  25. Cifuentes-Delatte L, Santos M, Hidalgo A, Bellanato J, Gonzalez Diaz PF (1976) Calcified bacteria in renal stones. In: Fleisch H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis research. International Symposium, Davos. Plenum, New York, pp 253–255Google Scholar
  26. Crenshaw MA (1982) Mechanisms of normal biological mineralization of calcium carbonates. In: Nancollas GH (ed) Biological mineralization and demineralization. Springer, Berlin Heidelberg New York (Dahlem Workshop Reports, vol 23, pp 243–257)Google Scholar
  27. Crenshaw MA, Neff JM (1969) Decalcification at the mantle-shell interface in molluscs. Am Zool 9: 881–885Google Scholar
  28. Daniele PG, Marangella M (1982) Ionic equilibria in urine: A computer model system improved by accurate stability constant values. Ann Chim 72: 25–38Google Scholar
  29. Dent ED, Sutor DJ (1971) Presence or absence of inhibitor of calcium-oxalate crystal growth in urine of normals and of stone formers. Lancet I: 775–778Google Scholar
  30. Desjardins A, Tawashi R (1978) Growth retardation of calcium oxalate by sodium copper chlorophyllin. Eur Urol 4: 294–297PubMedGoogle Scholar
  31. Dieppe PA, Crocker P, Huskisson EC, Willoughby DA (1976) Apatite deposition disease. A new arthropathy. Lancet I: 266–269Google Scholar
  32. Doremus RH (1972) Crystal growth and agglomeration in solution. In: Finlayson B, Hench LL, Smith LH (eds) Urolithiasis, physical aspects. National Academy of Sciences, Washington, pp 193–202Google Scholar
  33. Doremus RH, Gardner GL, McKey W (1976) Crystallization of calcium oxalate in various media and urolithiasis. In: Thomas WC, Finlayson B (eds) International colloquium on renal stones. University of Florida Press, Gainesville, pp 18–32Google Scholar
  34. Dosch W (1975) Genese und Wachstum von Harnsteinen. Fortschr Urol Nephrol 5: 67–83Google Scholar
  35. Dosch W (1978) Mineralogische Grundlagen der Harnsteinbildung. Med Welt 29: 39–43PubMedGoogle Scholar
  36. Dosch W (1980) Morphologie von Harnsteinen. In: Schneider HJ, Bothor C (Hrsg) VI. Jenaer Harnsteinsymposium. Friedrich Schiller Universitát, Jena, S112–115Google Scholar
  37. Dosch W (1981a) Neue Urate (I): Vorkommen in Harn- und Prostatasteinen. Fortschr Urol Nephrol 17: 240–253Google Scholar
  38. Dosch W (1981b) Neue Urate (II): Harnsaure und Harnsaure-dihydrat. Fortschr Urol Nephrol 17: 254–264Google Scholar
  39. Dosch W (1982) Harnsaure, Harnsaure-dihydrat und Urate. In: Schneider HJ, Bothor C (Hrsg) VII. Jenaer Harnsteinsymposium (Prag 1981 ). Friedrich Schiller Universitát, Jena, S 46–60Google Scholar
  40. Dosch W, Eisen M (1980) Monohydroxocalcit, eine neue Harnsteinkomponente. In: Schneider HJ, Bothor C (Hrsg) VI. Jenaer Harnsteinsymposium. Friedrich Schiller Universitát, Jena, S116–118Google Scholar
  41. Dosch W, Koestel C (1975) Rasterelektronenmikroskopie von Harnsteinen. Z Urol 68: 25–41Google Scholar
  42. Dosch W, Matzke A (1984) Zur Kristallchemie der Urate. Fortschr Urol Nephrol 22: 279–289Google Scholar
  43. Edelmann K (1968) Lehrbuch der Kolloidchemie. Deutscher Verlag der Wissenschaften, BerlinGoogle Scholar
  44. Eisen M, Dosch W, Schafer L, Hohenfellner R (1976) Statistics of urolithiasis. In: Fleisch H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis research. International Symposium, Davos. Plenum, New York, pp 429–432Google Scholar
  45. Elliott JS, Sharp RF, Lewis L (1959) Urinary pH. J Urol 81: 339–343Google Scholar
  46. Epstein W (1884) Die Natur und Behandlung der Harnsteine. WiesbadenGoogle Scholar
  47. Epstein W, Nicolaier A (1881) Uber die experimentelle Erzeugung von Harnsteinen. WiesbadenGoogle Scholar
  48. Finlayson B (1972) The concept of a continuous crystallizer. Invest Urol 9: 258–263PubMedGoogle Scholar
  49. Finlayson B (1977a) Where and how does urinary stone disease start? An essay on the expectation of free-and fixed-particle urinary stone disease. In: Reen R Van (ed) Idiopathic urinary bladder stone disease. DHEW Publication No. (NIH) 77-1063, Bethesda, pp 7–32Google Scholar
  50. Finlayson B (1977b) Calcium stones: Some physical and clinical aspects. In: David DS (ed) Calcium metabolism in renal failure and nephrolithiasis. Wiley & Sons, New York Chichester, pp 337–382Google Scholar
  51. Finlayson B (1978) Physicochemical aspects of urolithiasis. Kidney Int 13: 344–360PubMedGoogle Scholar
  52. Finlayson B, Meyers AS (1972) Stone ultrastructure. In: Finlayson B, Hench LL, Smith LH (eds) Urolithiasis, physical aspects. National Academy of Sciences, Washington, pp 115–128Google Scholar
  53. Finlayson B, Reid F (1978) The expectation of free and fixed particles in urinary stone disease. Invest Urol 15: 442–448PubMedGoogle Scholar
  54. Fleisch H, Russell RG (1977) Experimental and clinical studies with pyrophosphate and diphosphonates. In: David DS (ed) Calcium metabolism in renal failure and nephrolithiasis, Wiley & Sons, New York Chichester, pp 293–336Google Scholar
  55. Finlayson B, Roth RA, Dubois LG (1973) Calcium oxalate solubility studies. In: Cifuentes-Delatte L, Rapado A, Hodgkinson A (eds) Urinary calculi. Karger, Basel, S1–7Google Scholar
  56. Garside J (1982) Nucleation. In: Nancollas GH (ed) Biological mineralization and demineralization. Springer, Berlin Heidelberg New York (Dahlem Workshop Reports, vol 23, pp 23–38)Google Scholar
  57. Garside J, Davey RJ (1980) Secondary contact nucleation: Kinetics, growth and scale-up. Chem Eng Commun 4: 393–424Google Scholar
  58. Gebhardt MAH, Bastian HP (1976 a) Harnsteingruppierung und Analysengenauigkeit. UrolInt31:217–229Google Scholar
  59. Gehardt MAH, Bastian HP ( 1976 b) Exact stone analysis — significance to prophylaxis. In: Fleisch H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis research. International Symposium, Davos. Plenum, New York, pp 273–276Google Scholar
  60. Gebhardt MAH, Mtinzenberg KJ (1970 a) Zur Epitaxie von Calciumphosphaten auf Kollagen und Apatit. Biomineralisation 6: 66–69Google Scholar
  61. Gebhardt MAH, Munzenberg KJ, Przybilka A, Klippe HJ (1970) Kristallographische Untersuchungen der Knochenminerale. Z Orthop 107: 191–197PubMedGoogle Scholar
  62. Gebhardt MAH, Bastian HP, Vahlensieck W (1979) Statistische Auswertung von 4000 Harnsteinanalysen. Fortschr Urol Nephr 14: 315–322Google Scholar
  63. Gill WB, Karesh W, Garsin L, Roma MJ (1978) Inhibitory effects of urinary macromolecules on the crystallization of calcium oxalate. Invest Urol 15: 95–99Google Scholar
  64. Grunberg W, Preisinger A (1976) Magnesian calcites in urinary stones of herbivorous mammals. In: Fleisch H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis research. International Symposium, Davos. Plenum, New York, pp 285–287Google Scholar
  65. Grunberg W, Kovaciny Jelinek CL, Preisinger A (1977) Harn und Harnsteine bei Tierund Mensch. Fortschr Urol Nephrol 9: 125–132Google Scholar
  66. Harned HS, Owen BB (1958) The physical chemistry of electrolytic solutions, 3rd edn. Reinhold, New YorkGoogle Scholar
  67. Hascall VC, Lowther DA (1982) Components of the organic matrix: Proteoglycans. In: Nancollas GH (ed) Biological mineralization and demineralization, Springer, Berlin Heidelberg New York, ( Dahlem Workshop Reports, vol 23, pp 179–198 )Google Scholar
  68. Heckel RW (1972) Do urinary stones form by a coarsening process? In: Finlayson B, Hench LL, Smith LH (eds) Urolithiasis, physical aspects. National Academy of Sciences, Washington, pp 275–285Google Scholar
  69. Hench LL (1972) Factors in protein-mineral epitaxis. In: Finlayson B, Hench LL, Smith LH (eds) Urolithiasis, physical aspects. National Academy of Sciences, Washington, pp 203–213Google Scholar
  70. Howard JE, Thomas WC Jr, Smith LH, Barker LM, Wadkins CL (1966) A urinary peptide with extraordinary inhibitory powers against biological “calcification” (deposition of hydroxy-apatite crystals). Trans Assoc Am Physicians 69: 137–144Google Scholar
  71. Ito H, Coe FL (1977) Acidic peptide and polyribonucleotide crystal growth inhibitors in human urine. Am J Physiol 233: 455–463Google Scholar
  72. Keil F (1971) Zement. Springer, Berlin Heidelberg New YorkGoogle Scholar
  73. King JS, Boyce WH (1963) Immunological studies on serum and urinary proteins in urolith matrix in man. Ann NY Acad Sci 104: 579–591Google Scholar
  74. Krampitz GP (1982) Structure of the organic matrix in mollusc shells and avian eggshells. In: Nancollas GH (ed) Biological mineralization and demineralization. Springer, Berlin Heidelberg New York (Dahlem Workshop Reports, vol 23, pp 219–232)Google Scholar
  75. Krüche A (1979) Uber Struktur und Entstehung der Uratsteine. Inaugural-Dissertation 1879. Nachdruck in: Schneider HJ, Doberentz (Hrsg) Zur Geschichte der Jenaer Harnsteinforschung. Friedrich Schiller Universitát, Jena, 1–43Google Scholar
  76. Leal J, Finlayson B (1977) Adsorption of naturally occuring polymers on calcium oxalate surfaces. Invest Urol 14: 278–283PubMedGoogle Scholar
  77. Lonsdale K (1968 a) Human stones. Sci Am 104–111Google Scholar
  78. Lonsdale K (1968 b) Epitaxy as a growth factor in urinary calculi and gallstones. Nature (London) 217:56–58Google Scholar
  79. Lonsdale K, Mason D (1966) Uric acid, uric acid dihydrate and urates in urinary calculi, ancient and modern. Science 152: 1511–1512PubMedGoogle Scholar
  80. Lyon ES, Borden TA, Vermeulen CW (1966 a) Experimental oxalate lithiasis produced with ethylene glycole. Invest Urol 4:143Google Scholar
  81. Lyon ES, Borden TA, Ellis JE, Vermeulen CW (1966b) Calcium oxalate lithiasis produced by pyridoxine deficiency and inhibition with high magnesium diets. Invest Urol 4: 133PubMedGoogle Scholar
  82. Mandel NS (1976) The structural basis of crystal-induced membranolysis. Arthritis Rheum 19: 439–445PubMedGoogle Scholar
  83. Mandel NS, Mandel GS (1976) Monosodium urate monohydrate, the gout culprit. J Am Chem Soc 98 /8: 2319–2323PubMedGoogle Scholar
  84. Mandel NS, Mandel GS (1981) Epitaxie between stone-forming crystals at the atomic level. In: Smith LH, Robertson WG, Finlayson B (eds) Urolithiasis, clinical and basic research. Plenum, New York London, pp 469–480Google Scholar
  85. May P, Sokeland J, Schmidt P (1968) Zur Erholungsfahigkeit der Harnstauniere. Internist (Berlin) 9: 174–178Google Scholar
  86. McCarthy DJ Jr (1965) The inflammatory reaction of microcrystalline sodium urate. Arthritis Rheum 8: 726–735Google Scholar
  87. Meckel von Helmsbach in Mikrogeologie, Reimer, Berlin 1856. In: Robertson WG, Scurr DS, Bridge CM (1981) J Cryst Growth 53:182Google Scholar
  88. Meyer AS, Finlayson B, Dubois L (1971) Direct observation of urinary ultrastructure. Br J Urol 43: 154–163PubMedGoogle Scholar
  89. Meyer AS, Bergert JH, Smith LH (1975) Epitaxial relationships in urolithiasis: The calcium oxalate monohydrate hydroapatite system. Clin Sci Mol Med 49: 369–374PubMedGoogle Scholar
  90. Meyer K (1968) Physikalisch-chemische Kristallographie. Deutscher Verlag Grundstoff- industrie, LeipzigGoogle Scholar
  91. Moreno EC, Zahradnik RT (1979) Demineralization and remineralization of dental enamel. J Dent Res 58B: 896–902PubMedGoogle Scholar
  92. Munzenberg KJ, Gebhard M (1970) Kristalline Calciumphosphate des Knochens. Biomineralisation 6: 91–95Google Scholar
  93. Nancollas GH (1966) Interactions in electrolyte solutions. Elsevier, Amsterdam Nancollas GH (1972) The structure of multicomponent electrolyte solutions. In: Finlayson B, Hench LL, Smith LH (Hrsg) Urolithiasis, physical aspects. National Academy of Sciences, Washington, pp 65–77Google Scholar
  94. Nancollas GH (1979) The growth of crystals in solution. Adv Colloid Interface Sci 10: 215–252Google Scholar
  95. Nancollas GH (1982) Phase transformation during precipitation of calcium salts. In: Nancollas GH (ed) Biological mineralization and demineralization. Springer, Berlin Heidelberg New York (Dahlem Workshop Reports, vol 23, pp 79–100)Google Scholar
  96. Nielsen AE (1966) The kinetics of electrolyte precipitation. J Colloid Sci 10: 576–586Google Scholar
  97. Nielsen AE, Christoffersen J (1982) The mechanism of crystal growth and dissolution. In: Nancollas GH (ed) Biological mineralization and demineralization, Springer, Berlin Heidelberg New York (Dahlem Workshop Reports, vol 23, pp 37–78)Google Scholar
  98. Nielsen SP, Trap Jensen J, Hartling O, Christiansen TF (1976) Ionized calcium concentration measured by a new double-membrane calcium-sensitive electrode. In: Fleisch H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis research. International Symposium, Davos. Plenum, New York, pp 491–493Google Scholar
  99. Oliver J, MacDowell M, Whang R, Welt LG (1966) The renal lesions of electrolyte imbalance. IV. The intranephronic calculosis of experimental magnesium depletion. J Exp Med 124: 263–277PubMedGoogle Scholar
  100. Pak CYC, Arnold LH (1975) Heterogeneous nucleation of calcium oxalate by seeds of monosodium urate. Proc Soc Exp Biol Med 149: 930–932PubMedGoogle Scholar
  101. Philipsborn H von (1958) Zur Harnsteinbildung aus der Sicht des Mineralogen. Urol Int 7: 28–47Google Scholar
  102. Porter P (1963) Physico-chemical factors involved in urate calculus formation (I) Solubility. Res Vet Sci 4: 580–591Google Scholar
  103. Posey LC (1942) Urinary concretions II. A study of the primary calculous lesions. J Urol 48: 300–309Google Scholar
  104. Powers TC (1964) The physical structure of portland cement paste. In: Taylor HFW (ed) The chemistry of cements, vol 1. Academic Press, London New York, pp 391–416Google Scholar
  105. Prien EL (1963) Crystallographic analysis of urinary calculi; a 25 year survey study. J Urol 89: 917–924PubMedGoogle Scholar
  106. Prien EL (1974) The analysis of urinary calculi. Urologic clinics of North America, vol 1/2. Saunders, Philadelphia, p 229Google Scholar
  107. Prien EL, Frondel CI (1974) Studies in urolithiasis: I. The composition of urinary calculi. J Urol 57: 949–994Google Scholar
  108. Prien EL, Prien EL Jr (1968) Composition and structure of urinary stones. Am J Med 45: 654–672PubMedGoogle Scholar
  109. Prockop DJ, Williams CJ (1982) Structure of the organic matrix: Collagen structure (chemical). In: Nancollas GH (ed) Biological mineralization and demineralization. Springer, Berlin Heidelberg New York, pp 161–178Google Scholar
  110. Ralston PH (1972) Inhibiting water-formed deposits with treshold compositions. Corrosion, Paper No 43/43/1-43/13Google Scholar
  111. Randall A (1936) An hypothesis for the origin of renal calculus. N Engl J Med 214: 234Google Scholar
  112. Randall A (1937) The initiating lesion of renal calculus. Surg Gynecol Obstet 64: 201Google Scholar
  113. Randall A, Melvin PD (1937) The morphogeny of renal calculus. J Urol 37: 737–745Google Scholar
  114. Resnick MI (1977) Urinary stone matrix. In: Reen R van (ed) Idiopathic urinary bladder stone disease. DHEW Publication No. (NIH) 77–1063, Bethesda, pp 73–81Google Scholar
  115. Resnick MI, Gammon CW, Sorrell MB, Boyce WH (1981) Urinary calcium binding proteins and renal calculi. In: Smith LH, Robertson WG, Finlayson B (eds) Urolithiasis, clinical and basic research, Plenum, New York London, pp 675–684Google Scholar
  116. Robertson WG (1969 a) A method for measuring calcium crystalluria. Clin Chim Acta 26:105–110Google Scholar
  117. Robertson WG (1969 b) Measurement of ionized calcium in biological fluids. Clin Chim Acta 26:149–157Google Scholar
  118. Robertson WG (1982) Mechanisms of pathological mineralization - state of the art report. In: Nancollas GH (ed) Biological mineralization and demineralization. Springer Berlin Heidelberg New York (Dahlem Workshop Reports, vol 23, pp 367–388)Google Scholar
  119. Robertson WG, Reacock M, Nordin BEC (1969) Calcium oxalate crystalluria in recurrent renal stone formers. Lancet II: 21–24Google Scholar
  120. Robertson WG, Peacock M, Nordin BEC (1971) Calcium oxalate crystalluria and urine saturation in recurrent renal stone formers. Clin Sci 40: 365–374PubMedGoogle Scholar
  121. Robertson WG, Peacock M, Nordin BEC (1972a) Crystalluria. In: Finlayson B, Hench LL, Smith LH (eds) Urolithiasis, physical aspects. National Academy of Sciences, Washington, pp 243–257Google Scholar
  122. Robertson WG, Peacock M, Nordin BEC ( 1972 b) Measurement of activity products in urine from stone-formers and normal subjects. In: Finlayson B, Hench LL, Smith LH (eds) Urolithiasis, physical aspects. National Academy of Sciences, Washington, pp 76–96Google Scholar
  123. Robertson WG, Peacock M, Marshall RW, Marshall DH, Nordin BEC (1976 a) Saturation-inhibition index as a measure of the risk of calcium oxalate stone formation in the urinary tract. N Engl J Med 294: 249–252Google Scholar
  124. Robertson WG, Knowles F, Peacock M ( 1976 b) Urinary acid mucopolysaccharide inhibitors of calcium oxalate crystallization. In: Fleisch H, Smith LH, Robertson WG, Vahlensieck W (eds) Urolithiasis research. International Symposium, Davos. Plenum, New York, pp 331–334Google Scholar
  125. Robertson WG, Peacock M, Heyburn PJ, Marshall DH, Clark PB (1978) Risk factors in calcium stone disease of the urinary tract. Br J Urol 50: 449–454PubMedGoogle Scholar
  126. Robertson WG, Scurr DS, Bridge CM (1981) Factors influencing the crystallization of calcium oxalate in urine — Critique. J Cryst Growth 53: 182–194Google Scholar
  127. Rose MB (1975) Renal stone formation: The inhibitory effect of urine on calcium oxalate precipitation. Invest Urol 12: 428–433PubMedGoogle Scholar
  128. Rumpf H, Schubert H (1978) Adhesion in agglomeration processes. In: Onoda GY, Hench LL (eds) Ceramic processing before firing. Wiley amp; Sons, New York Chichester, pp 357–376Google Scholar
  129. Russel KC (1972) Nucleation mechanisme in aqueous solutions, with comments on urine. In: Finlayson B, Hench LL, Smith LH (eds) Urolithiasis, physical aspects. National Academy of Sciences, Washington, pp 129–143Google Scholar
  130. Sallis JD, Bichler KH, Korn S, Haußmann A (1981) Urinary glycosaminglycan excretion in patients with urolithiasis. In: Smith LH, Robertson WG, Finlayson B (eds) Urolithiasis, clinical and basic research. Plenum, New York London, pp 619–622Google Scholar
  131. Schafer A, Dosch W (1975) Das System Calcium-Oxalat-Wasser bei 38 °C. Fortschr Urol Nephrol 7: 70–82Google Scholar
  132. Schafer A, Dosch W (1978) Morphologie und Genese von Calciumoxalat-Harnsteinen. Fortschr Urol Nephrol 11: 111–123Google Scholar
  133. Schenk RK, Hunziker E, Herrmann W (1982) Structural properties of cells related to tissue mineralization. In: Nancollas GH (ed) Biological mineralization and demineralization. Springer, Berlin Heidelberg New York (Dahlem Workshop Reports, vol 23, pp 143–168)Google Scholar
  134. Schrier EE, Rubin JL, Lee KE, Werness PG, Smith LH (1981) Characterization of the calcium oxalate crystal growth inhibitors in human urine. In: Smith LH, Robertson WG, Finlayson B (eds) Urolithiasis, clinical and basic research. Plenum, New York London, pp 579–588Google Scholar
  135. Schulz E, Schneider HJ ( 1981 a) A new view of stone formation under the aspect of flow dynamics. In: Smith LH, Robertson WG, Finlayson B (eds) Urolithiasis, clinical and basis research. Plenum, New York London, pp 533–538Google Scholar
  136. Schulz E, Schneider HJ ( 1981 b) Stromungstechnische Untersuchungen an Nierenmodellen. In: Schneider HJ, Bothor C (Hrsg) VII. Jenaer Harnsteinsymposium. Friedrich Schiller Universitát, Jena, S 247–252Google Scholar
  137. Shirley R, Sutor DJ (1968) Anhydrous uric acid: Nature and occurence of a new form in urinary calculi. Science 159: 544PubMedGoogle Scholar
  138. Smith LH, McCall JT (1972) Isolation of nucleation inhibitor from urine. In: Finlayson B, Hench LL, Smith LH (eds) Urolithiasis, physical aspects. National Academy of Sciences, Washington, pp 157–160Google Scholar
  139. Sparnaay MJ (1972) The electrical double layer. Pergamon, Oxford New York Toronto Sydney Braunschweig. (The international enzyclopedia of physical chemistry and chemical physics, topic 14: Properties of interfaces, vol 4)Google Scholar
  140. Sutor DJ (1972) The nature of urinary stones. In: Finlayson B, Hench LL, Smith LH (eds) Urolithiasis, physical aspects. National Academy of Sciences, Washington, pp 43–63Google Scholar
  141. Sutor DJ, Wooley SE (1974) Composition of urinary calculi by X-ray diffraction. Collected data from various localities. Parts XV-XVII. Br J Urol 46: 229–232Google Scholar
  142. Sutor DJ, Wooley SE, Illingsworth JJ (1974) Some aspects of the adult urinary stone problem in Great Britain and Northern Ireland. Br J Urol 46: 275–288PubMedGoogle Scholar
  143. Szabo E, Modis L (1980) Histochemische Untersuchung der Matrix kalziumhaltiger Harnsteine anhand optischer Methoden. Z Urol Nephrol 73: 879–885PubMedGoogle Scholar
  144. Szabo E, Modis L (1981) Uber die Anwendung der polarisationsoptischen Untersu- chungsmethoden bei der strukturellen Erforschung der Harnsteinmatrix. Jenaer Rundsch 3: 89–92Google Scholar
  145. Thomas WC Jr, Tilden MT, Baskin AD (1972) Inhibitors of mineralization in urine from normal and calculous subjects. In: Finlayson B, Hench LL, Smith LH (eds) Urolithiasis, physical aspects. National Academy of Sciences, Washington, pp 145–156Google Scholar
  146. Turnbull D, Vonnegut B (1952) Nucleation catalysis. Ind Eng Chem 44 /6: 1292–1298Google Scholar
  147. Vermeulen CW (1972) Calcugenesis and stone triggering. In: Finlayson B, Hench LL, Smith LH (eds) Urolithiasis, physical aspects. National Academy of Sciences, Washington, pp 237–242Google Scholar
  148. Vermeulen CW, Lyon ES (1968) Mechanism of genesis and growth of calculi. Am J Med 45: 684–692PubMedGoogle Scholar
  149. Vermeulen CW, Lyon ES, Gill WB (1964) Artificial urinary concretions. Invest Urol 1: 370–386PubMedGoogle Scholar
  150. Vermeulen CW, Lyon ES, Fried FA (1965) The nature of the stone-forming process. J Urol 94: 176–186PubMedGoogle Scholar
  151. Vermeulen CW, Grove WJ, Goetz R, Ragins HD, Correll NO (1950) Experimental urolithiasis. I. Development of calculi upon foreign bodies surgically introduced into bladders of rats. J Urol 64: 541–548PubMedGoogle Scholar
  152. Vermeulen ES, Ellis JE, Hsu Te-Chin (1966) Experimental observations on the pathogenesis of urinary calculi. J Urol 95: 681–690PubMedGoogle Scholar
  153. Walton AG (1967) The formation and properties of precipitates. Chem Anal Ser Monogr Anal Chem Appl 23: 1–232Google Scholar
  154. Werness PG, Bergert JH, Smith LH (1981) Crystalluria. J Cryst Growth 53: 166–181Google Scholar
  155. Wolpers C, Wosiewitz G (1975) Rasterelektronenmikroskopie der Gallensteine. Klinikarzt 4/9: 343–360Google Scholar
  156. Young RA, Brown WE (1982) Structures of biological minerals. In: Nancollas GH (ed) Biological mineralization and demineralization. Springer, Berlin Heidelberg New York (Dahlem Workshop Reports, vol 23, pp 101–142)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • W. Dosch

There are no affiliations available

Personalised recommendations