Advertisement

H Tunneling and Local Diffusion in NbOxHy

  • H. Wipf
  • A. Magerl
  • K. Neumaier
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 10)

Abstract

The presently best understood example of low-temperature H tunneling in metals is represented by H interstitials in Nb that are trapped (below ~150 K /1,2/) by impurity atoms such as 0 or N. The tunneling behavior has been investigated in a great number of specific heat, ultrasonic (anelastic) and neutron spectroscopic measurements (see e.g. the studies of /3–11/ and references therein). The relevant tunneling process observed in the experiments is most likely to occur between two nearest-neighbor tetrahedral trap sites located in the neighborhood of an 0 or N trap center (for a detailed discussion, see /2,5/). In the temperature range below ~ 5 K, the tunneling matrix element was found to be ~ 0. 2 meV for the isotope H /3,5–7,9/ and ~ 0.02 meV for D /9/.

Keywords

Conduction Electron Superconducting State Trap Center Tunneling State Jump Diffusion Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    G. Pfeiffer, H. Wipf, J. Phys. F.: Metal Phys. 6, 167 (1976)ADSCrossRefGoogle Scholar
  2. /2/.
    A. Magerl, J. J. Rush, J. M. Rowe, D. Richter, H. Wipf, Phys. Rev. B 27, 927 (1983)ADSCrossRefGoogle Scholar
  3. /3/.
    H. Wipf, A. Magerl, S.M. Shapiro, S. K. Satija, W. Thomlinson, Phys. Rev. Lett. 46, 947 (1981)ADSCrossRefGoogle Scholar
  4. /4/.
    G. Cannelli, R. Cantelli, G. Vertechi, J. Less-Common Met. 88, 335 (1982)CrossRefGoogle Scholar
  5. /5/.
    H. Wipf, K. Neumaier, in Electronic Structure and Properties of Hydrogen in Metals, eds. P. Jena, C. B. Satterthwaite, Plenum Publishing Corp., New York and London 1983, p. 485Google Scholar
  6. /6/.
    G. Bellessa, J. Physique (Lett.) 44, L387 (1983)CrossRefGoogle Scholar
  7. /7/.
    H. Wipf, K. Neumaier, A. Magerl, A. Heidemann, W. Stirling, J. Less-Common Met. 101, 317 (1984)CrossRefGoogle Scholar
  8. /8/.
    D. B. Poker, G. G. Setser, A. V. Granato, H. K. Birnbaum, Phys. Rev. B 29, 622 (1984)ADSCrossRefGoogle Scholar
  9. /9/.
    H. Wipf, K. Neumaier, Phys. Rev. Lett. 52, 1308 (1984)ADSCrossRefGoogle Scholar
  10. /10/.
    J. L. Wang, G. Weiss, H. Wipf, A. Magerl, in Phonon Scattering in Condensed Matter, eds. W. Eisenmenger, K. Lassmann, S. Dottinger, Springer-Verlag, Berlin-Heidelberg-New York 1984, p. 401Google Scholar
  11. /11/.
    F. K. Huang, A. V. Granato, H. K. Birnbaum, Phys. Rev. B 32, 2178 (1985)ADSCrossRefGoogle Scholar
  12. /12/.
    A. Magerl, A. J. Dianoux, H. Wipf, K. Neumaier, I. S. Anderson, Phys. Rev. Lett., in printGoogle Scholar
  13. /13/.
    H. Wipf, D. Steinbinder, K. Neumaier, P. Gutsmiedl, A. Magerl, A. 3. Dianoux, to be publishedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • H. Wipf
    • 1
  • A. Magerl
    • 2
  • K. Neumaier
    • 3
  1. 1.Technische Hochschule DarmstadtInstitut für FestkörperphysikDarmstadtGermany
  2. 2.Institut Laue-LangevinGrenobleFrance
  3. 3.Walther-Meissner-Institut für TieftemperaturforschungGarchingGermany

Personalised recommendations