Interstitial Point Defects (D,N,O) in Transition Metals

  • J. Peisl
  • H. Dosch
  • A. von Schwerin
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 10)


Diffuse neutron or X-ray scattering close to the Bragg peaks (Huang scattering) and far away from Bragg peaks (Zwlschenreflex-scatterlng) supplies detailed information on point defects and small agglomerates in crystals [1]. The defect structure, i.e. the lattice location, the displacements of the near neighbours and the strength and symmetry of the long ranged displacement field can be determined. In order to demonstrate the power of this technique, we report on recent experimental results. Interstlllally dissolved N and O in Nb are located on octahedral sites and create rather large displacements in their vicinity. Their long ranged displacement field shows the symmetry of the defect site. The light Interstltlals H and D in Nb are located on tetrahedral sites and their long ranged displacement field shows the symmetry of the host lattice. A rather complicated defect model is necessary in order to explain the local defect structure.


Mobile State Octahedral Site Lattice Distortion Bragg Peak Tetrahedral Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review see e.g.: H. Pelsl, J. de Physique 37. C7–47 (1976).CrossRefGoogle Scholar
  2. 1a.
    P. Ehrhart, J. of Nucl. Mat. 69 & 70. 200 (1978)CrossRefGoogle Scholar
  3. 2.
    J. Pelsl, Lattice Distortion, Elastic Interaction and Phase Transitions of Hydrogen in Metals, in Festkörperprobleme (Advances in Solid State Physics), p. 45, P. Grosse (ed.), Vieweg, Braunschweig 1984Google Scholar
  4. 3.
    H. Trinkaus, phys. stat. sol. (b) 51, 307 (1972)ADSCrossRefGoogle Scholar
  5. 4.
    H.G. Haubold, J. Appl. Cryst. 8, 175 (1974)CrossRefGoogle Scholar
  6. 5.
    U. Schubert, H. Metzger and J. Peisl, J. Phys.F 14, 2467 (1984)ADSCrossRefGoogle Scholar
  7. 6.
    H. Dosch and J. Peisl, Phys. Rev. B 32, 623 (1985)ADSCrossRefGoogle Scholar
  8. 7.
    V.K. Tewary, J. Phys. F 3, 1515 (1973)ADSCrossRefGoogle Scholar
  9. 8.
    J.R. Rowe and A. Magerl, Phys. Rev.B 21, 1706 (1980)ADSCrossRefGoogle Scholar
  10. 9.
    A. von Schwerin, Diplomarbeit LMU München 1985Google Scholar
  11. 10.
    D.T. Keating and S.J. La Placa, J. Phys. Chem. Solids 35,879 (1974)ADSCrossRefGoogle Scholar
  12. 11.
    E. Burkel, H. Dosch and J. Peisl, Z. Phys. B, Condensed Matter 53, 33(1983)Google Scholar
  13. 12.
    H. Metzger, J. Peisl and J. Wanagel, J. Phys. F: Metal Phys. 6, 2195(1976)Google Scholar
  14. 13.
    E. Burkel, Doctoral Thesis, University of Munich 1982Google Scholar
  15. 14.
    H.D. Carstanjen and R. Sizmann, Physics Letters 40 A 93 (1972)CrossRefGoogle Scholar
  16. 15.
    H. Dosch, Doctoral Thesis, University of Munich 1984Google Scholar
  17. 16.
    C.P. Flynn and A. M. Stoneham, Phys. Rev.B 1, 3966 (1970)ADSCrossRefGoogle Scholar
  18. 17.
    V. Lottner, J.W. Hans, A. Helm, K.W. Kehr, J. Phys. Chem. Sol. 40, 557(1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • J. Peisl
    • 1
  • H. Dosch
    • 1
  • A. von Schwerin
    • 1
  1. 1.Sektion Physik der Ludwig-Maximilians-Universität MünchenMünchen 22Germany

Personalised recommendations