Characterization of Chaotic Instabilities in an Electron-Hole Plasma in Germanium

  • G. A. Held
  • C. D. Jeffries
Part of the Springer Series in Synergetics book series (SSSYN, volume 32)


Helical instabilities in an electron-hole plasma in Ge in parallel dc electric and magnetic fields are known to exhibit chaotic behavior. By fabricating probe contacts along the length of a Ge crystal we study the spatial structure of these instabilities, finding two types: (i) spatially coherent and temporally chaotic helical density waves characterized by strange attractors of measured fractal dimension d ~ 3, and (ii) beyond the onset of spatial incoherence, instabilities of indeterminately large fractal dimension d ≥ 8. In the first instance, calculations of the fractal dimension provide an effective means of characterizing the observed chaotic instabilities. However, in the second instance, these calculations do not provide a means of determining whether the observed plasma turbulence is of stochastic or of deterministic (i.e., chaotic) origin.


Phase Space Fractal Dimension Chaotic System Chaotic Dynamic Strange Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    for example, H. L. Swinney: Physica (Utrecht) 7D, 3 (1983);ADSGoogle Scholar
  2. see also The Physics of Chaos and Related Problems, edited by S. Lundqvist, Phys. Scr. T9 (1985).Google Scholar
  3. 2.
    D. Ruelle and F. Takens: Comm. Math. Phys. 20, 167 (1971);MathSciNetADSMATHCrossRefGoogle Scholar
  4. E. Ott: Rev. Mod. Phys. 53, 655 (1981).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 3.
    for example, J. D. Farmer, E. Ott, J. A. Yorke: Physica (Utrecht) 7D, 153 (1983).MathSciNetADSGoogle Scholar
  6. 4.
    A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano: Physica 16D, 285 (1985).MathSciNetADSGoogle Scholar
  7. 5.
    J. P. Crutchfield and N. H. Packard: Int. J. Theor. Phys. 21, 433 (1982);MathSciNetMATHCrossRefGoogle Scholar
  8. Physica 7D, 201 (1983);MathSciNetADSGoogle Scholar
  9. P. Grassberger and I. Procaccia: Phys. Rev. A 28, 2591 (1983).ADSCrossRefGoogle Scholar
  10. 6.
    I. L. Ivanov and S. M. Ryvkin: Zh. Tekh. Fiz. 28, 774 (1958)Google Scholar
  11. [Sov. Phys. Tech. Phys. 3, 722 (1958)].Google Scholar
  12. 7.
    C. E. Hurwitz and A. L. McWhorter: Phys. Rev. 134, A1033 (1964).ADSCrossRefGoogle Scholar
  13. 8.
    G. A. Held, C. Jeffries and E. E. Haller: Phys. Rev. Lett. 52, 1037 (1984);ADSCrossRefGoogle Scholar
  14. Proceedings of the Seventeenth International Conference on the Physics of Semiconductors, San Francisco, 1984, edited by D. J. Chadi and W. A. Harrison (Springer-Verlag, New York, 1985), p. 1289.Google Scholar
  15. 9.
    G. A. Held and C. Jeffries: Phys. Rev. Lett. 55, 887 (1985).ADSCrossRefGoogle Scholar
  16. 10.
    for example, J. P. Gollub and S. V. Benson in Pattern Formation and Pattern Recognition edited by H. Haken (Springer-Verlag, Berlin, 1979), p. 74.CrossRefGoogle Scholar
  17. 11.
    N. H. Packard, J. P. Crutchfield, J. D. Farmer and R. S. Shaw: Phys. Rev. Lett. 45, 712(1980).Google Scholar
  18. 12.
    Unconventional notation is used in Eq. (1) to avoid confusion with the notation of Eq. (2).Google Scholar
  19. 13.
    P. Grassberger and I. Procaccia: Phys. Rev. Lett. 50, 346 (1983).MathSciNetADSCrossRefGoogle Scholar
  20. 14.
    H. G. E. Hentschel and I. Procaccia: Physica 8D, 435 (1983).MathSciNetADSGoogle Scholar
  21. 15.
    A. Brandstäter et al: Phys. Rev. Lett. 51, 1442 (1983).MathSciNetADSCrossRefGoogle Scholar
  22. 16.
    H. L. Swinney and J. P. Gollub: to appear in Physica D.Google Scholar
  23. 17.
    This has been observed in calculations of fractal, information and correlation dimensions for a system consisting of a driven p-n junction in series with an inductor and a resistor. G. A. Held and C. Jeffries, unpublished.Google Scholar
  24. 18.
    F. Takens: “Detecting Strange Attractors in Turbulence”, in Lecture Notes in Mathematics 898, edited by D. A. Rand and L. S. Young (Springer-Verlag, Berlin, 1981), p. 366.Google Scholar
  25. 19.
    H. S. Greenside, A. Wolf, J. Swift and T. Pignaturo: Phys. Rev. A 25, 3453 (1982).ADSGoogle Scholar
  26. 20.
    The pointwise dimension is defined in reference 3. Similar definitions of dimension have been given in references 11, 20, 21, and 31 therein.Google Scholar
  27. 21.
    This is the method used by A. Brandstater et al, in reference 15. See also reference 13.Google Scholar
  28. 22.
    A. Ben-Mizrachi, I. Procaccia and P. Grassberger: Phys. Rev. A 29, 975 (1984).ADSCrossRefGoogle Scholar
  29. 23.
    A fractal dimension of this magnitude (~1010) is experimentally unattain able for two reasons. First, an inordinate number of data points would be required, as discussed in Section 4. Second, one would need to measure signals with a very large bandwidth Δf ~ 1/τ, where τ is the shortest fluctuation time; typically Δf ~ 109 — 1014 Hz for stochastic noise in conducting media. Thus, fractal dimensions of this magnitude are operationally meaningless.Google Scholar
  30. 24.
    B. B. Mandelbrot: The Fractal Geometry of Nature (W. H. Freeman and Company, New York, 1983), p.310.Google Scholar
  31. 25.
    S. Ciliberto and J. P. Gollub: J. Fluid Mech. 158, 381 (1985).MathSciNetADSCrossRefGoogle Scholar
  32. 26.
    H. Froehling, J. P. Crutchfield, J. D. Farmer, N. H. Packard, and R. Shaw: Physica 3D, 605 (1981).MathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • G. A. Held
    • 1
  • C. D. Jeffries
    • 1
  1. 1.Department of Physics and Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations