Advertisement

Portfolio Decisions and Capital Market Equilibria Under Incomplete Information

  • Volker Firchau
Conference paper

Summary

In the scope of the hybrid model which is characterized by the assumptions of an exponential utility function and of normally distributed end-of-period values of the risky assets, the optimum portfolio decisions are determined in the case of incompletely known prior parameters. Risk and uncertainty approaches are examined. The problems of the determination of equilibrium prices are dealt with.

Keywords

Prior Distribution Equilibrium Price Optimal Portfolio Risky Asset Certainty Equivalent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bamberg, G.; Spremann, K. (1981): Implications of Constant Risk Aversion, Zeitschrift für Operations Research, 25, 205–224CrossRefGoogle Scholar
  2. Barry, C.B. (1974): Portfolio Analysis under uncertain Means, Variances, and Covariances, Journal of Finance 29, 515–522CrossRefGoogle Scholar
  3. Bawa, V.S.; Brown, S.J.; Klein, R.W. (1979): Estimation Risk and Optimal Portfolio Choice, North-Ho11and Publishing Company, Amsterdam-New York-OxfordGoogle Scholar
  4. Bierlein, D. (1963): Einheitliche Prinzipien für die Beurteilung statistischer Verfahren, Blätter der Deutschen Gesellschaft für Versicherungsmathematik 6, 442–456Google Scholar
  5. Bühler, W. (1977): Portfeuilleplanung bei unvollkommen bekannten Mittelwerten und Varianzen, Proceedings in Operations Research 7, 158–167Google Scholar
  6. Bühler, W. (1984): Capital Budgeting and Financial Planning under Qualitative Data Information, in: J.P. Brans (Ed.): Operational Research’ 84, 250–265Google Scholar
  7. Burger, E. (1966): Einführung in die Theorie der Spiele, 2. Auflage, Walter de Gruyter, BerlinGoogle Scholar
  8. Cohen, K.J.; Hawawini, G.A.; Maier, S.F.; Schwartz, R.A.; Whitcomb, D.K. (1983): Estimating and Adjusting for the Intervalling-Effect Bias in Beta, Management Science 29, 135–147CrossRefGoogle Scholar
  9. Goel, P.K. (1983): Information Measures and Bayesian Hierarchical Models, Journal of the American Statistical Association 78, 408–410CrossRefGoogle Scholar
  10. Goel, P.K.; DeGroot, M.H. (1981): Information about Hyperparameters in Hierarchical Models, Journal of the American Statistical Association 76, 140–147CrossRefGoogle Scholar
  11. Hsu, D.A. (1982): A Bayesian Robust Detection of Shift in the Risk Structure of Stock Market Returns, Journal of the American Statistical Association 77, 29–39CrossRefGoogle Scholar
  12. Jennings, R.H.; Barry, C.B. (1983): Information Dissemination and Portfolio Choice, Journal of Financial and Quantitative Analysis 18, 1, 1–19CrossRefGoogle Scholar
  13. Jobson, J.D.; Korkie, B. (1980): Estimation for Markowitz Efficient Portfolios, Journal of the American Statistical Association 75, 544–554CrossRefGoogle Scholar
  14. Kalymon, B.A. (1971): Estimation Risk in the Portfolio Selection Model, Journal of Financial and Quantitative Analysis 6, 559–582CrossRefGoogle Scholar
  15. Kofler, E.; Menges, G. (1976): Entscheidungen bei unvollständiger Information, Springer-Verlag, Berlin-Heidelberg-New YorkGoogle Scholar
  16. Kofler, E.; Menges, G.; Fahrion, R.; Huschens, S.; Kuss, U. (1980): Stochastische partielle Information, Statistische Hefte 21, 160–167CrossRefGoogle Scholar
  17. LaValle, I.H. (1970): An Introduction to Probability, Decision and Inference, International Series in Decision Processes, New YorkGoogle Scholar
  18. Levy, H.; Kroll, Y. (1980): Sample vs. Population Mean-Variance Efficient Portfolios, Management Science 26, 11, 1108–1116CrossRefGoogle Scholar
  19. Lin, W.T. (1981): A Minimum Bayes Risk Approach to Optimal Portfolio Choice, International Journal of Systems Science 12, 495–509CrossRefGoogle Scholar
  20. Lin, W.T.; Boot, J.C.G. (1982): A Linear Decision Analysis Model of Optimal Portfolio Investments, International Journal of Systems Sciences 13, 469–489CrossRefGoogle Scholar
  21. Lintner, J. (1969): The Aggregation of Investor’s Diverse Judgement and Preferences in Purely Competitive Security Markets, Journal of Financial and Quantitative Analysis 4, 347–400CrossRefGoogle Scholar
  22. Maier, S.F.; Peterson, D.W.; Van der Weide, J.H. (1982): An Empirical Bayes Estimate of Market Risk, Management Science 28, 728–737CrossRefGoogle Scholar
  23. Mao, J.C.T.; Särndal, C.E. (1966): A Decision Theory Approach to Portfolio Selection, Management Science 12, B323–B333CrossRefGoogle Scholar
  24. Morris, J.R. (1974): The Logarithmic Investor’s Decision to Acquire Costly Information, Management Science 21, 383–391CrossRefGoogle Scholar
  25. Pratt, J.W.; Raiffa, H.; Schlaifer, R. (1965): Introduction to Statistical Decision Theory, McGraw-Hill, New YorkGoogle Scholar
  26. Richter, H. (1963): Subjektive Wahrscheinlichkeit und multisubjektive Tests, Zeitschrift für Wahrscheinlichkeitstheorie 1, 271–277CrossRefGoogle Scholar
  27. Rockafellar, R.T. (1970): Convex Analysis, Princeton, University PressGoogle Scholar
  28. Wilhelm, J. (1981): Zum Verhältnis von Capital Asset Pricing Model, Arbitrage Pricing Theory und Bedingungen der Arbitragefreiheit von Finanzmärkten, Zeitschrift für betriebswirtschaftliche Forschung 33, 891–905Google Scholar
  29. Winkler, R.L.; Barry, C.B. (1975): A Bayesian Model for Portfolio Selection and Revision, Journal of Finance 30, 179–192.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York Tokyo 1986

Authors and Affiliations

  • Volker Firchau

There are no affiliations available

Personalised recommendations