Skip to main content

Genetic Determination of Bacterial Virulence, with Special Reference to Salmonella

  • Chapter
Genetic Control of the Susceptibility to Bacterial Infection

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 124))

Abstract

“Virulence factor” or “virulence determinant” is often used to refer to bacterial traits, such as production of a surface component hindering phagocytosis, whose presence is noted to be correlated with virulence and whose loss, by mutation, etc., causes loss or great reduction in virulence in an experimental system. Logically any bacterial property indispensable for bacterial growth in the relevant compartment of the host, such as ability to grow at the temperature there prevalent, should be considered a virulence factor; we shall discuss such properties, as well as those commonly called virulence factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson RP, Roth JR (1977) Tandem genetic duplications in phage and bacteria. Annu Rev Microbiol 31: 473–505

    Article  PubMed  CAS  Google Scholar 

  • Babior BM (1978) Oxygen-dependent microbial killing by phagocytes. New Engl J Med 298:659–668; 721–725

    Article  PubMed  CAS  Google Scholar 

  • Bacon GA, Burrows TW, Yates M (1950a) The effects of biochemical mutation on the virulence of Bacterium typhosum: the induction and isolation of mutants. Br J Exp Pathol 31: 703–713

    PubMed  CAS  Google Scholar 

  • Bacon GA, Burrows TW, Yates M (1950 b) The effect of biochemical mutation on the virulence of Bacterium typhosum: the virulence of mutants. Br J Exp Pathol 31: 714–724

    CAS  Google Scholar 

  • Bacon GA, Burrows TW, Yates M (1951) The effects of biochemical mutation on the virulence of Bacterium typhosum: the loss of virulence of certain mutants. Br J Exp Pathol 32: 85–96

    PubMed  CAS  Google Scholar 

  • Benjamin WH Jr, Turnbough CL Jr, Posey BS, Briles DE (1985) The ability of Salmonella typhimurium to produce the iron gathering siderophore, enterobactin, is not a virulence factor in mouse typhoid. Infect Immun 50: 392–397

    PubMed  CAS  Google Scholar 

  • Berche PA, Carter PB (1982) Calcium requirement and virulence of Yersinia enterocolitica. J Med Microbiol 15: 277–284

    Article  PubMed  CAS  Google Scholar 

  • Bhakdi S, Tranum-Jensen J, Klump O (1980) The terminal membrane C5b-9 complex of human complement. Evidence for the existence of multiple protease-resistant polypeptides that form the transmembrane complement channel. J Immunol 124: 2451–2457

    PubMed  CAS  Google Scholar 

  • Björnson AB, Björnson HS (1977) Activation of complement by opportunist pathogens and chemo-types of Salmonella minnesota. Infect Immun 16: 748–753

    PubMed  Google Scholar 

  • Blanden RV, MacKaness GB, Collins FM (1966) Mechanisms of acquired resistance in mouse typhoid. J Exp Med 124: 585–600

    Article  PubMed  CAS  Google Scholar 

  • Blumenstock E, Jann K (1981) Natural resistance of mice to Salmonella typhimurium: bactericidal activity and chemiluminescence response of murine peritoneal macrophages. J Gen Microbiol 125: 173–179

    PubMed  CAS  Google Scholar 

  • Bölin I, Norlander L, Wolf-Watz H (1982) Temperature-inducible outer membrane protein of Yersinia pseudotuberculosis and Yersinia enterocolitica is associated with the virulence plasmid. Infect Immun 37: 506–512

    PubMed  Google Scholar 

  • Brinton CC (1959) Non-flagellar appendages of bacteria. Nature 183: 782–786

    Article  PubMed  Google Scholar 

  • Brubaker RR (1972) The genus Yersinia: biochemistry and genetics of virulence. Curr Top Microbiol Immunol 57: 111–158

    Article  PubMed  CAS  Google Scholar 

  • Carsiotis M, Weinstein DL, Karch H, Holder I A, O’Brien AD (1984) Flagella of Salmonella typhimurium are a virulence factor in infected C57BL/6J mice. Infect Immun 46: 814–818

    PubMed  CAS  Google Scholar 

  • Clegg S (1982) Cloning of genes determining the production of mannose-resistant fimbriae in a uropathogenic strain of Escherichia coli belonging to serogroup 06. Infect Immun 38: 739–744

    PubMed  CAS  Google Scholar 

  • Coleman W, Leive L (1979) Two mutations which affect the barrier function of the Escherichia coli K-12 outer membrane. J Bacteriol 139: 899–910

    PubMed  CAS  Google Scholar 

  • Collins FM (1969) Effect of immune mouse serum on the growth of Salmonella enteritidis in non-vaccinated mice challenged by various routes. J Bacteriol 97: 667–675

    PubMed  CAS  Google Scholar 

  • Cooper GN, Fahey KJ (1970) Oral immunization in experimental salmonellosis. III. Behavior of virulent and temperature-sensitive mutant strains in the intestinal tissues of rats. Infect Immun 2: 192–200

    PubMed  CAS  Google Scholar 

  • de Graaf FK, Klaasen-Boor P, van Hees JE (1980) Biosynthesis of the K99 surface antigen is repressed by alanine. Infect Immun 30: 125–128

    PubMed  Google Scholar 

  • Droge W, Ruschman E, Lüderitz O, Westphal O (1968) Biochemical studies on lipopolysaccharides of Salmonella R mutants. 4. Phosphate groups linked to heptose units and their absence in some R lipopolysaccharides. Eur J Biochem 4: 134–138

    Article  PubMed  CAS  Google Scholar 

  • Duguid JP, Gillies RR (1958) Fimbriae and haemagglutinating activity in Salmonella, Klebsiella, Proteus and Chromobacterium. J Pathol Bacteriol 75: 519–520

    Google Scholar 

  • Duguid JP, Darekar MR, Wheater DWF (1976) Fimbriae and infectivity in Salmonella typhimurium. J Med Microbiol 9: 459–473

    Article  PubMed  CAS  Google Scholar 

  • Edwang TG, Befus AD (1984) The role of complement in the induction and regulation of immune responses. Immunology 51: 207–224

    Google Scholar 

  • Eisenstein B (1981) Phase variation of Type 1 fimbriae in Escherichia coli is under transcriptional control. Science 214: 337–339

    Article  PubMed  CAS  Google Scholar 

  • Elsbach P, Weiss J (1983) A reevaluation of the roles of the O2-dependent and O2 independent microbicidal systems of phagocytes. Rev Infect Dis 5: 843–853

    Article  PubMed  CAS  Google Scholar 

  • Finne J, Leinonen M, Makela PH (1983) Antigenic similarities between brain components and bacteria causing meningitis. Lancet 2: 354–357

    Google Scholar 

  • Gaastra W, de Graaf FK (1982) Host-specific fimbrial adhesins of noninvasive enterotoxigenic Escherichia coli strains. Microbiol Rev 46: 129–161

    CAS  Google Scholar 

  • Gemski P, Lazere JR, Casey T (1980) Plasmid associated with pathogenicity and calcium dependency of Yersinia enterocolitica. Infect Immun 27: 682–685

    PubMed  CAS  Google Scholar 

  • Girardeau JP, Dubourguier HC, Gouet Ph (1982) Effect of glucose and amino acids on expression of K99 antigen in Escherichia coli. J Gen Microbiol 128: 2243–2249

    PubMed  CAS  Google Scholar 

  • Göransson M, Uhlin BE (1984) Environmental temperature regulates transcription of a virulence pili operon in E. coli. EMBO J 3: 2885–2888

    Google Scholar 

  • Griffin FM Jr, Mullinax PJ (1981) Augmentation of macrophage complement receptor function in vitro. III. C3b receptors that promote phagocytosis migrate within the plane of the macrophage plasma membrane. J Exp Med 154: 291–305

    Article  PubMed  CAS  Google Scholar 

  • Grossman N, Leive L (1984) Complement activation via the alternative pathway by purified Salmonella lipopolysaccharide is affected by its structure but not its O-antigen length. J Immunol 132: 376–385

    PubMed  CAS  Google Scholar 

  • Gutteridge WE, Coombes GH (1977) Biochemistry of parasitic protozoa. University Park Press, Baltimore

    Google Scholar 

  • Hackstadt T, Williams JC (1981) Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci USA 78: 3240–3244

    Article  PubMed  CAS  Google Scholar 

  • Halula M, Stocker BAD (1984) Cloning mannose-resistant hemagglutination gene(s) in Salmonella typhimurium. Abstr Annu Meet Am Soc Microbiol p 24

    Google Scholar 

  • Halula M, Stocker BAD (1985) Mannose-resistant haemagglutination gene(s) of Salmonella typhimurium. Abstr Annu Meet Am Soc Microbiol p 34

    Google Scholar 

  • Hammer CH, Shin ML, Abramovitz AS, Mayer MM (1977) On the mechanism of cell membrane damage by complement: evidence on insertion of polypeptide chains from C8 and C9 into the lipid bilayer of erythrocytes. J Immunol 119: 1–8

    PubMed  CAS  Google Scholar 

  • Herzberg M (1962) Living organisms as immunizing agents against experimental salmonellosis in mice. I. Virulence of auxotrophic mutants. J Infect Dis 111: 192–203

    Article  CAS  Google Scholar 

  • Hoiseth SK, Stocker BAD (1981) Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291: 238–239

    Article  PubMed  CAS  Google Scholar 

  • Hull RA, Gill RE, Hsu P, Minshew BH, Falkow S (1981) Construction and expression of recombinant plasmids encoding type 1 or D-mannose-resistant pili from a urinary tract infection Escherichia coli. Infect Immun 33: 933–938

    PubMed  CAS  Google Scholar 

  • Ivanovics G, Marjai E, Dobozy A (1968) The growth of purine mutants of Bacillus anthracis in the body of the mouse. J Gen Microbiol 53: 147–162

    PubMed  CAS  Google Scholar 

  • Joiner KA, Hammer CH, Brown EJ, Cole RJ, Frank MM (1982a) Studies on the mechanism of bacterial resistance to complement-mediated killing. I. Terminal complement components are deposited and released from Salmonella minnesota S218 without causing bacterial death. J Exp Med 155: 797–808

    Article  PubMed  CAS  Google Scholar 

  • Joiner KA, Hammer CH, Brown EJ, Frank MM (1982 b) Studies on the mechanism of bacterial resistance to complement-mediated killing. II. C8 and C9 release C5b67 from the surface of Salmonella minnesota S218 because the terminal complex does not insert into the bacterial outer membrane. J Exp Med 155: 809–819

    Article  CAS  Google Scholar 

  • Joiner KA, Schmetz MA, Goldman RC, Leive L, Frank MM (1984) Mechanism of bacterial resistance to complement-mediated killing: inserted C5b-9 correlates with killing for Escherichia coli 0111B4 varying in O-antigen capsule and O-polysaccharide coverage of lipid A core oligosaccharide. Infect Immun 45: 113–117

    PubMed  CAS  Google Scholar 

  • Jones GW, Rutter JM (1972) Role of the K88 antigen in the pathogenesis of neonatal diarrhea caused by Escherichia coli in piglets. Infect Immun 6: 918–927

    PubMed  CAS  Google Scholar 

  • Jones GW, Rabert DK, Svinarich DM, Whitfield HJ (1982) Association of adhesive, invasive, and virulent phenotypes of Salmonella typhimurium with autonomous 60-megadalton plasmids. Infect Immun 38: 476–486

    PubMed  CAS  Google Scholar 

  • Källenius G, Mollby R, Svenson SB, Winberg J, Hultberg H (1980) Identification of a carbohydrate receptor recognized by uropathogenic Escherichia coli. Infection 8: S288–S293

    Article  Google Scholar 

  • Kauffmann F (1941) A typhoid variant and a new serological variation in the Salmonella group. J Bacteriol 41: 127–140

    PubMed  CAS  Google Scholar 

  • Korhonen TK, Valtonen MV, Parkkinen J, Väisänen-Rhen V, Finne J, Ørskov F, Ørskov I, Svenson SB, Mäkelä PH (1985) Escherichia coli strains associated with neonatal sepsis and meningitis: serotypes, hemolysin production and receptor recognition. Infect Immun 48: 386–491

    Google Scholar 

  • Labigne-Roussel AF, Lark D, Schoolnik G, Falkow S (1984) Cloning and expression of an afimbrial adhesin (AFA-I) responsible for P blood group-independent, mannose-resistant hemagglutination from a pyelonephritic Escherichia coli strain. Infect Immun 46: 251–259

    PubMed  CAS  Google Scholar 

  • Langenberg M-L, Tytgat GNJ, Schipper MEI, Rietra PJGM, Zanen HC (1984) Campylobacter-like organisms in the stomach of patients and healthy individuals. Lancet 1: 1348

    Article  Google Scholar 

  • Law SK, Lichtenberg NA, Levine RP (1979) Evidence for an ester linkage between the labile binding site of C3b and receptive surfaces. J Immunol 123: 1388–1394

    PubMed  CAS  Google Scholar 

  • Lederberg J, lino T (1956) Phase variation in Salmonella. Genetics 41: 744–757

    Google Scholar 

  • Leffler H, Svanborg Eden C (1980) Chemical identification of a glycosphingolipid receptor for Escherichia coli attaching to human urinary tract epithelial cells and agglutinating human erythrocytes. FEMS Microbiol Lett 8: 127–134

    Article  CAS  Google Scholar 

  • Liang-Takasaki C-J, Mäkelä PH, Leive L (1982) Phagocytosis of bacteria by macrophages: changing the carbohydrate of lipopolysaccharide alters interaction with complement and macrophages. J Immunol 128: 1229–1235

    PubMed  CAS  Google Scholar 

  • Liang-Takasaki C-J, Grossman N, Leive L (1983) Salmonellae activate complement differentially via the alternative pathway depending on the structure of their lipopolysaccharide O-antigen. J Immunol 130: 1867–1870

    PubMed  CAS  Google Scholar 

  • Linde K, Keller H, Ezold R, Blatz B, Gericke B, Koch H, Kittlick M, Schmidt S (1974) Live vaccines against infections with Enterobacteriaceae: problems of selection of attenuated mutants and their genetic stability. Acta Microbiol Acad Sei Hung 21: 11–27

    CAS  Google Scholar 

  • Lysko PG, Morse SA (1981) Neisseria gonorrhoeae cell envelope: permeability to hydrophobic molecules. J Bacteriol 145:946–952

    PubMed  CAS  Google Scholar 

  • MacKaness GB, BlandenRV,CollinsFM (1966) Host-parasite relations in mouse typhoid. J Exp Med 124: 573–583

    Article  PubMed  CAS  Google Scholar 

  • Mäkelä PH, Mäkelä O (1966) Salmonella antigen 122: genetics of form variation. Ann Med Exp Fenn 44: 310–317

    PubMed  Google Scholar 

  • Mäkelä PH, Stocker BAD (1984) Genetics of lipopolysaccharide. In: Rietschel ET (ed) Handbook of endotoxin, vol 1: chemistry of endotoxin. Elsevier, Amsterdam, pp 50–137

    Google Scholar 

  • Mekalanos JJ (1983) Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35:253– 263

    Article  PubMed  CAS  Google Scholar 

  • Modrzakowski MC, Spitznagel JK (1979) Bactericidal activity of fractionated granule contents from human polymorphonuclear leukocytes: antagonism of granule cationic proteins by lipopolysaccharide. Infect Immun 25: 597–602

    PubMed  CAS  Google Scholar 

  • Moll A, Manning PA, Timmis KN (1980) Plasmid-determined resistance to serum bactericidal activity: a major outer membrane protein, the traT gene product, is responsible for plasmid-specified serum resistance in Escherichia coli. Infect Immun 28: 359–367

    PubMed  CAS  Google Scholar 

  • Moon HW, Nagy B, Isaacson RE, Ørskov I (1977) Occurrence of K99 antigen on Escherichia coli isolated from pigs and colonization of pig ileum by K99+ enterotoxigenic Escherichia coli from calves and pigs. Infect Immun 15: 614–620

    PubMed  CAS  Google Scholar 

  • Morrison DC, Kline LF (1977) Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharides (LPS). J Immunol 118: 362–368

    PubMed  CAS  Google Scholar 

  • Nevola JJ, Stocker BAD, Laux DC, Cohen PS (1985) Colonization of the mouse intestine by an avirulent Salmonella typhimurium strain and its lipopolysaccharide-defective mutants. Infect Immun 50: 152–159

    PubMed  CAS  Google Scholar 

  • Normark S (1969) Mutation in Escherichia coli K-12 mediating spherelike envelopes and changed tolerance to ultraviolet irradiation and some antibiotics. J Bacteriol 98: 1274–1277

    PubMed  CAS  Google Scholar 

  • Normark S, Lark D, Hull R, Norgren M, Baga M, O’Hanley P, Schoolnik G, Falkow S (1983) Genetics of digalactoside-binding adhesin from uropathogenic Escherichia coli strain. Infect Immun 41: 942–949

    PubMed  CAS  Google Scholar 

  • Normark S, Båga M, Göransson M, Lindberg F, Lund B, Norgren M, Uhlin B-E (1985) Genetics of bacterial adhesins. In: Korhonen TK, Dawes EA, Mäkelä PH (eds) Enterobacterial surface antigens: methods for molecular characterization. Elsevier, Amsterdam

    Google Scholar 

  • Nowicki B, Rhen M, Väisänen-Rhen V, Pere A, Korhonen TK (1984) Immunofluorescence study of fimbrial phase variation in Escherichia coli KS71. J Bacteriol 160: 691–695

    PubMed  CAS  Google Scholar 

  • O’Brien AD, Scher I, Formal SB (1979) Effect of silica on the innate resistance of inbred mice to Salmonella typhimurium infection. Infect Immun 25: 513–520

    PubMed  Google Scholar 

  • O’Brien AD, Newland JW, Miller SF, Holmes RK (1984) Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226: 694–696

    Article  PubMed  Google Scholar 

  • Old DC (1972) Inhibition of the interaction between fimbrial haemagglutinins and erythrocytes by D-mannose and other carbohydrates. J Gen Microbiol 71: 149–157

    PubMed  CAS  Google Scholar 

  • Orndorff PE, Falkow S (1984) Identification and characterization of a gene product that regulates Type 1 piliation in Escherichia coli. J Bacteriol 160: 61–66

    PubMed  CAS  Google Scholar 

  • Ørskov F, Ørskov I, Sutton A, Schneerson R, Lin W, Egan W, Hoff GE, Robbins JB (1979) Form variation in Escherichia coli Kl: determined by O-acetylation of the capsular polysaccharide. J Exp Med 149: 669–685

    Article  PubMed  Google Scholar 

  • Ørskov I, Ferenc A, Ørskov F (1980) Tamm-Horsfall protein or uromucoid is the normal urinary slime that traps type 1 fimbriated Escherichia coli. Lancet 1: 887

    Article  PubMed  Google Scholar 

  • Pangburn MK, Müller-Eberhard HJ (1980) Relation of a putative thioester bond in C3 to activation of the alternative pathway and the binding of C3b to biological targets of complement. J Exp Med 152: 1102

    Article  PubMed  CAS  Google Scholar 

  • Parkkinen J, Finne J, Achtman M, Väisänen V, Korhonen TK (1983) Escherichia coli strains binding neuraminyl 2–3 galactosides. Biochem Biophys Res Commun 111: 456–461

    Article  PubMed  CAS  Google Scholar 

  • Pluschke G, Achtman M (1984) Degree of antibody-independent activation of the classical complement pathway by K1 Escherichia coli differs with O antigen type and correlates with virulence of meningitis in newborns. Infect Immun 43: 684–692

    PubMed  CAS  Google Scholar 

  • Pluschke G, Mayden J, Achtman M, Levine RP (1983 a) Role of the capsule and the O antigen in resistance of 018:K1 Escherichia coli to complement-mediated killing. Infect Immun 42: 907–913

    CAS  Google Scholar 

  • Pluschke G, Mercer A, Kusecek B, Pohl A, Achtman M (1983 b) Induction of bacteremia in newborn rats by Escherichia coli Kl is correlated with only certain O (lipopolysaccharide) antigen types. Infect Immun 39: 599–608

    CAS  Google Scholar 

  • Portnoy DA, Blank HF, Kingsbury DT, Falkow S (1983) Genetic analysis of essential plasmid determinants of pathogenicity in Yersinia pestis. J Infect Dis 148: 297–304

    Article  PubMed  CAS  Google Scholar 

  • Rhen M, Knowles J, Penttilä ME, Sarvas M, Korhonen TK (1983 a) P fimbriae of Escherichia coli: molecular cloning of DNA fragments containing the structural genes. FEMS Microbiol Lett 19: 119–123

    Article  CAS  Google Scholar 

  • Rhen M, Mäkelä PH, Korhonen TK (1983 b) P fimbriae of Escherichia coli are subject to phase variation. FEMS Microbiol Lett 19: 267–271

    Article  CAS  Google Scholar 

  • Robertsson JA, Lindberg AA, Hoiseth SK, Stocker BAD (1983) Salmonella typhimurium infection in calves: evaluation of protection and survival of virulent S. typhimurium challenge bacteria after immunization with live or inactivated S. typhimurium vaccines. Infect Immun 41: 742–750

    PubMed  CAS  Google Scholar 

  • Rutter JM, Jones GW (1973) Protection against enteric disease caused by Escherichia coli: a model for vaccination with a virulence determinant. Nature 242: 531–533

    Article  PubMed  CAS  Google Scholar 

  • Saier MH, Schmidt MR, Leibowitz M (1978) Cyclic AMP-dependent synthesis of fimbriae in Salmonella typhimurium: effects of cya and pts mutations. J Bacteriol 134: 356–358

    PubMed  CAS  Google Scholar 

  • Sansonetti PJ, Kopecko DJ, Formal SB (1982) Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect Immun 35: 852–860

    PubMed  CAS  Google Scholar 

  • Sansonetti PJ, Hale TL, Dammin GJ, Kapfer C, Collins HH, Formal SB (1983) Alterations in the pathogenicity of Escherichia coli K-12 after transfer of plasmid and chromosomal genes from Shigella flexneri. Infect Immun 39: 1392–1402

    PubMed  CAS  Google Scholar 

  • Saxen H (1984) Mechanism of the protective action of anti-Salmonella IgM in experimental mouse salmonellosis. J Gen Microbiol 130: 2277–2283

    PubMed  CAS  Google Scholar 

  • Saxen H, Hovi M, Mäkelä PH (1984) Lipopolysaccharide and mouse virulence of Salmonella: O antigen is important after intraperitoneal but not intravenous challenge. FEMS Microbiol Lett 24: 63–66

    Article  CAS  Google Scholar 

  • Schlecht S, Schmidt G (1969) Möglichkeiten zur Differenzierung von Salmonella-R-Formen mittels Antibiotica und antibakterieller Farbstoffe. Zentralbl Bakteriol Parasitenk Infektionskr Hyg Abt 1, Orig. 212: 505–511

    Google Scholar 

  • Schreiber RD, Morrison DC, Podack ER, Müller-Eberhard J (1979) Bactericidal activity of the alternative complement pathway generated from 11 isolated plasma proteins. J Exp Med 149: 870–882

    Article  PubMed  CAS  Google Scholar 

  • Schweizer M, Schwarz H, Sonntag I, Henning U (1976) Mutational change of membrane architecture. Mutants of Escherichia coli Kl2 missing major proteins of the outer cell envelope membrane. Biochim Biophys Acta 448: 474–491

    Article  PubMed  CAS  Google Scholar 

  • Seilwood R, Gibbons RA, Jones GW, Rutter JM (1975) Adhesion of enteropathogenic Escherichia coli to pig intestinal brush borders: the existence of two pig phenotypes. J Med Microbiol 8: 405–411

    Article  Google Scholar 

  • Simonet M, Mazigh D, Berche P (1984) Growth of Yersinia pseudotuberculosis in mouse spleen despite loss of a virulence plasmid of mol. wt. 47 x 106. J Med Microbiol 18: 371–375

    Article  PubMed  CAS  Google Scholar 

  • Skurnik M, Bölin I, Heikkinen H, Piha S, Wolf-Watz H (1984) Virulence plasmid-associated autoagg-lutination in Yersinia spp. J Bacteriol 158: 1033–1036

    PubMed  CAS  Google Scholar 

  • Smith BP, Reina-Guerra M, Hoiseth SK, Stocker BAD, Habasha F, Johnson E, Meritt F (1983) Safety and efficacy of aromatic-dependent Salmonella typhimurium as live vaccine for calves. Am J Vet Res 45: 59–66

    Google Scholar 

  • Smith BP, Reina-Guerra M, Stocker BAD, Hoiseth SK, Johnson E (1984) Aromatic-dependent Salmonella dublin as a parenteral modified live vaccine for calves. Am J Vet Res 45: 2231–2235

    PubMed  CAS  Google Scholar 

  • Smith HW, Huggins MB (1980) The association of the 018, K1 and H7 antigens and the ColV plasmid of a strain of Escherichia coli with its virulence and immunogenicity. J Gen Microbiol 121: 387–400

    PubMed  CAS  Google Scholar 

  • Smith HW, Linggood MA (1971) Observations on the pathogenic properties of the K88 hly and ent plasmids of Escherichia coli with particular reference to porcine diarrhea. J Med Microbiol 4: 467–485

    Article  PubMed  CAS  Google Scholar 

  • Smith HW, Tucker JF (1976) The virulence of trimethoprim-resistant thymine-requiring strains of Salmonella. J Hyg 76: 97–108

    Article  CAS  Google Scholar 

  • Stevens P, Young LS, Adamu S (1983) Opsonization of various capsular (K) E. coli by the alternative complement pathway. Immunology 50: 497–502

    PubMed  CAS  Google Scholar 

  • Stocker BAD, Hoiseth SK, Smith BP (1983) Aromatic-dependent Salmonella sp. as live vaccine, in mice and calves. Dev Biol Stand 53: 47–62

    PubMed  CAS  Google Scholar 

  • Sukupolvi S, Vaara M, Heiander IM, Viljanen P, Mäkelä PH (1984) New Salmonella typhimurium mutants with altered outer membrane permeability. J Bacteriol 159: 704–712

    PubMed  CAS  Google Scholar 

  • Takeuchi A (1967) Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Pathol 50: 109–136

    PubMed  CAS  Google Scholar 

  • Tenner AJ, Ziccardi RJ, Cooper NR (1984) Antibody-independent CI activation by E. coli. J Immunol 133: 886–891

    PubMed  CAS  Google Scholar 

  • Tidmarsh GF, Rosenberg LT (1981) Aquisition of iron from transferrin by Salmonella paratyphi B. Current Microbiol 6: 217–220

    Article  CAS  Google Scholar 

  • Vaara M, Nikaido H (1984) Molecular organization of bacterial outer membrane. In: Rietschel ET (ed) Handbook of endotoxin, vol 1: chemistry of endotoxin. Elsevier, Amsterdam, pp 1–45

    Google Scholar 

  • Vaara M, Vaara T (1983) Sensitization of Gram-negative bacteria to antibiotics and complement by a nontoxic oligopeptide. Nature 133: 526–527

    Article  Google Scholar 

  • Vaara M, Viljanen P, Vaara T, Mäkelä PH (1984) An outer membrane-disorganizing peptide PMBN sensitizes E. coli strains to serum bactericidal action. J Immunol 132: 2582–2589

    PubMed  CAS  Google Scholar 

  • Väisänen V, Elo J, Tallgren LG, Siitonen A, Mäkelä PH, Svanborg Eden C, Källenius G, Svenson SB, Hultberg H, Korhonen TK (1981) Mannose-resistant hemagglutination and P antigen recognition are characteristic of Escherichia coli causing primary pyelonephritis. Lancet 11: 1366–1369

    Article  Google Scholar 

  • Valtonen MV (1977) Role of phagocytosis in mouse virulence of Salmonella typhimurium recombinants with O-antigen 6, 7 or 4, 12. Infect Immun 18: 574–578

    PubMed  CAS  Google Scholar 

  • Valtonen VV (1970) Mouse virulence of Salmonella strains: the effect of different smooth-type O side-chains. J Gen Microbiol 64: 255–268

    PubMed  CAS  Google Scholar 

  • Weinstein DL, Carsiotis M, Lissner CR, O’Brien AD (1984) Flagella help Salmonella typhimurium survive within murine macrophages. Infect Immun 46: 819–825

    PubMed  CAS  Google Scholar 

  • Weiss J, Victor M, Elsbach P (1983) Role of charge and hydrophobic interaction in the action of the bactericidal/permeability-increasing protein of neutrophils on gram-negative bacteria. J Clin Invest 71: 540–549

    Article  PubMed  CAS  Google Scholar 

  • Williams PH, Warner PJ (1980) ColV plasmid-mediated, colicin V-independent iron uptake system of invasive strains of Escherichia coli. Infect Immun 29: 411–416

    PubMed  CAS  Google Scholar 

  • Wright SD, Levine RP (1981) How complement kills E. coli. I. Location of the lethal lesion. J Immunol 127: 1146–1151

    PubMed  CAS  Google Scholar 

  • Yancey RJ, Breeding SAL, Lankford CE (1979) Enterochelin (enterobactin): virulence factor for Salmonella typhimurium. Infect Immun 24: 174–180

    PubMed  CAS  Google Scholar 

  • Zaleska M, Lounatmaa K, Nurminen M, Wahlström E, Mäkelä PH (1985) A novel virulence- associated cell surface structure composed of 47 Kdal protein subunits in Yersinia enterocolitica. EMBO J 4: 1013–1018

    PubMed  CAS  Google Scholar 

  • Zieg J, Silverman M, Hilmen M, Simon M (1977) Recombinational switch for gene expression. Science 196: 170–172

    Article  PubMed  CAS  Google Scholar 

  • Zinc DL, Feeley JC, Wells JG, Vanderzant C, Vickery JC, Roof WD, O’Donoran GA (1980) Plasmid- mediated tissue invasiveness in Yersinia enterocolitica. Nature 283: 224–226

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Stocker, B.A.D., Mäkelä, P.H. (1986). Genetic Determination of Bacterial Virulence, with Special Reference to Salmonella . In: Briles, D.E. (eds) Genetic Control of the Susceptibility to Bacterial Infection. Current Topics in Microbiology and Immunology, vol 124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70986-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70986-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16238-4

  • Online ISBN: 978-3-642-70986-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics