Skip to main content

Genetic Control of the Susceptibility to Pneumococcal Infection

  • Chapter
Genetic Control of the Susceptibility to Bacterial Infection

Abstract

As with other pathogens used to infect mice, it has been known for some time that mouse strains differ in their ability to be infected by Streptococcus pneumoniae (Webster 1933; Schultz et al. 1936; Rake 1936). These observations provide evidence that there are genetic differences in mice that affect their resistance to pneumococci. Some of the earliest studies of genetic differences in pathogenesis of S. pneumoniae infections were done with the BS and BR mice which were bred by Lesslie Webster to be susceptible or resistant to infection with Salmonella enteritidis (Webster 1933). When Webster infected these mice with pneumococci by the nasal route, he found that BS mice were more susceptible to pneumococcal infection than the BR mice (Webster 1933).

This work has been supported by NIH grants CA 16673, CA 13148, AI 15986, AI 18557, and AI 21548 and Alabama Research Institute grant 420. David E. Briles is the recipient of a Research Career Development Award, AI 00498.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andres CM, Maddalena A, Hudak S, Young NM, Claflin JL (1981) Anti-phosphocholine hybridoma antibodies. II. Functional analysis of binding sites within these antibody families. J Exp Med 154: 1584–1598

    Article  PubMed  CAS  Google Scholar 

  • Austrian R (1979) Pneumococcal vaccine: development and prospects. Am J Med 67: 547–549

    Article  PubMed  CAS  Google Scholar 

  • Austrian R, MacLeod CM (1949) A type specific protein from pneumococcus. J Exp Med 89: 439–450

    Article  PubMed  CAS  Google Scholar 

  • Briles DE, Davie JM (1975) Clonal dominance. I. Restricted nature of the IgM antibody response to Group A streptococcal carbohydrate in mice. J Exp Med 141: 1291–1307

    Article  PubMed  CAS  Google Scholar 

  • Briles DE, Forman C (1985) Complement is required for the blood clearance of S. pneumonia by IgG as well as IgM anti-PC antibodies. (Manuscript in preparation.)

    Google Scholar 

  • Briles DE, Scott G (1985) Naturally occurring anti-phosphorylcholine levels in normal humans. (Manuscript in preparation.)

    Google Scholar 

  • Briles EB, Tomasz A (1973) Pneumococcal Forssman antigen: a choline-containing lipoteichoic acid. J Biol Chem 248: 6394–6397

    PubMed  CAS  Google Scholar 

  • Briles DE, Nahm M, Schroer K, Baker P, Davie J (1980) Susceptibility of (CBA/N x DBA/2)FX male mice to infection with type 3 (Streptococcus pneumoniae. In: Skamene E (ed) Perspectives in immunology: genetic control of natural resistance to infection and malignancy. Academic, London, pp 173–177

    Google Scholar 

  • Briles DE, Benjamin WH, Curtis AW, Davie JM (1981a) A genetic locus responsible for salmonella susceptibility in BSVS mice is not responsible for the limited T-dependent immune responsiveness of BSVS mice. J Immunol 127: 906–911

    PubMed  CAS  Google Scholar 

  • Briles DE, Claflin JL, Schroer K, Forman C (1981b) Mouse IgG3 antibodies are highly protective against infection with Streptococcus pneumoniae. Nature 294: 88–90

    Article  PubMed  CAS  Google Scholar 

  • Briles DE, Nahm M, Schroer K, Davie J, Baker P, Kearney J, Barletta R (1981c) Anti-phosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 S. pneumoniae. J Exp Med 153: 694–705

    Article  PubMed  CAS  Google Scholar 

  • Briles DE, Barletta R, Nahm M, Schroer K, Baker P, Kearney J (1982a) Use of hybridoma technology to study anti-pneumococcal antibodies: anti-phosphocholine antibodies can protect mice against infection with type 3 Streptococcus pneumoniae. In: Robbins JB, Hill JC, Sadoff JC (ed) Seminars in infectious diseases, vol IV: bacterial vaccines. Thieme-Stratton, New York, pp 1–5

    Google Scholar 

  • Briles DE, Forman C, Hudak S, Claflin JL (1982b) Anti-PC antibodies of the T15 idiotype are optimally protective against Streptococcus pneumoniae. J Exp Med 156: 1177–1185

    Article  PubMed  CAS  Google Scholar 

  • Briles DE, Nahm M, Marion TN, Perlmutter RM, Davie JM (1982c) Streptococcal group-A carbohydrate has properties of both a thymus-independent (TI-2) and a thymus-dependent antigen. J Immunol 128: 2032–2035

    PubMed  CAS  Google Scholar 

  • Briles DE, Forman C, Benjamin WH, Yother J (1983) Pathogenesis of type 1 Streptococcus pneumoniae in mice. Fed Proc 42 (4): 861

    Google Scholar 

  • Briles DE, Forman C, Hudak S, Claflin JL (1984a) The effects of subclass on the ability of IgG anti-phosphocholine antibodies. J Mol Cell Immunol 1: 305–309

    PubMed  CAS  Google Scholar 

  • Briles DE, Forman C, Hudak S, Claflin JF (1984b) The effects of idiotype on the ability of IgG1 anti-phosphocholine antibodies to protect mice from fatal infection with Streptococcus pneumoniae. Eur J Immunol 14: 1029–1030

    Article  Google Scholar 

  • Brown AR, Crandall CA, Crandall RB (1977) The immune response and acquired resistance to Ascaris suum infection in mice with an X-linked B lymphocyte defect. J Parasitol 63: 950–952

    Article  PubMed  CAS  Google Scholar 

  • Brundish DE, Baddiley J (1968) Pneumococcal C-substance, a ribitol teichoic acid containing choline phosphate. Biochem J 110: 573–582

    PubMed  CAS  Google Scholar 

  • Claflin JL, Davie JM (1974) Clonal nature of the immune response to phosphorylcholine. III. Species-specific characteristics of rodent anti-phosphorylcholine antibodies. J Immunol 113: 1678–1684

    PubMed  CAS  Google Scholar 

  • Claflin JL, Davie JM (1975) Clonal nature of the immune response to phosphorylcholine ( PC) V. J Exp Med 141: 1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Claflin JL, Hudak S, Maddalena A (1981) Anti-phosphocholine hybridoma antibodies. I. Direct evidence for three distinct families of antibodies in the murine response. J Exp Med 153: 352–364

    Article  PubMed  CAS  Google Scholar 

  • Cohn M, Notani G, Rice S (1969) Characterization of the antibody to the C-carbohydrate produced by a transplantable mouse plasmacytoma. Immunochemistry 6: 111–123

    Article  PubMed  CAS  Google Scholar 

  • Cowan MJ, Ammann AJ, Wara DW, Howie VM, Schultz L, Doyle N, Kaplan M (1978) Pneumococcal polysaccharide immunization in infants and children. Pediatrics 62: 721–727

    PubMed  CAS  Google Scholar 

  • Der Balian GP, Slack J, Clevinger BL, Bazin H, Davie JM (1980) Subclass restriction of murine antibodies. III. Antigens that stimulate IgG3 in the mouse stimulate IgG2c in the rat. J Exp Med 152: 209–218

    Article  Google Scholar 

  • Gearhart PJ, Johnson ND, Douglas R, Hood L (1981) IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts. Nature (London) 291: 29–34

    Article  CAS  Google Scholar 

  • Gray BM, Dillon HC, Briles DE (1983) Epidemiological studies of Streptococcus pneumonia in infants: development of antibody to phosphocholine. J CLin Microbiol 18: 1102–1107

    PubMed  CAS  Google Scholar 

  • Griffin FJ (1928) The significance of pneumococcal types. J Hyg 27: 113–159

    Article  Google Scholar 

  • Hoover RG, Lynch RG (1983) Isotype-specific suppression of IgA: suppression of IgA responses in BALB/c mice by Tα cells. J Immunol 130: 521–523

    PubMed  CAS  Google Scholar 

  • Hormaeche CE (1979) Natural resistance to Salmonella typhimurium in different inbred mouse strains. Immunology 137: 311–318

    Google Scholar 

  • Hunter KW Jr, Finkelman FD, Strickland GT, Sayles PC, Scher I (1979) Defective resistance to Plasmodium yoelii in CBA/N mice. J Immunol 123: 133–137

    PubMed  Google Scholar 

  • Kaplan MH, Volanakis JE (1974) Interaction of C-reactive protein complexes with the complement system. I. Consumption of human complement associated with the reaction of C-reactive protein with pneumococcal C-polysaccharide and with the choline phosphatides lecithin and sphingomyelin. J Immunol 112: 2135–2147

    PubMed  CAS  Google Scholar 

  • Kimball JW (1972) Maturation of immune response to type III pneumococcal polysaccharide. Immunochemistry 9: 1169–1184

    Article  PubMed  CAS  Google Scholar 

  • Kindmark CO (1977) Stimulating effect of C-reactive protein on phagocytosis of various species of pathogenic bacteria. Clin Exp Immunol 8: 941–948

    Google Scholar 

  • Levy L, Aizer F, Bejar C, Lutsky I, Mor N (1984) Experimental myco-bacterial infections of CBA/N mice. Isr J Med Sci 20: 598–602

    PubMed  CAS  Google Scholar 

  • Lieberman R, Potter M, Mushinski EB, Humphrey W Jr, Rudikoff S (1974) Genesis of a new IgVH (T15 idiotype) marker in the mouse regulating natural antibody to phosphorylcholine. J Exp Med 139: 983–1001

    Article  PubMed  CAS  Google Scholar 

  • MacLeod CM, Krauss MR (1950) Relation of virulence of pneumococcal strains for mice to the quality of capsular polysaccharide formed in vitro. J Exp Med 92: 1–9

    Article  PubMed  CAS  Google Scholar 

  • MacLeod CM, Hodges RG, Heidelberger M, Bernhard WG (1945) Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J Exp Med 82: 445–465

    Article  Google Scholar 

  • Marquis G, Montplaisir S, Pelletier M, Mousseau S, Auger P (1985) Genetic resistance to murine cryptococcosis: increased susceptibility in the CBA/N xid mutant strain of mice. Infect Immun 47: 282–287

    PubMed  CAS  Google Scholar 

  • McDaniel LS, Scott G, Kearney JF, Briles DE (1984a) Monoclonal antibodies against protease sensitive pneumococcal antigens can protect mice from fatal infection with Streptococcal pneumoniae. J Exp Med 160: 386–397

    Article  PubMed  CAS  Google Scholar 

  • McDaniel LS, Benjamin WH Jr, Forman C, Briles DE (1984b) Blood clearance by anti-phosphocho- line antibodies as a mechanism of protection in experimental pneumococcal bacteremia. J Immunol 133: 3308–3312

    PubMed  CAS  Google Scholar 

  • McDaniel LS, Scott G, Widenhofer K, Briles DE (1986) Analysis of a surface protein of Streptococcus pneumoniae recognized by protective monoclonal antibodies. Microbiol Pathogenesis. In press.

    Google Scholar 

  • McNamara MK, Ward RE, Kohler H (1984) Monoclonal idiotype vaccine against Streptococcus pneumoniae infection. Science 226: 1325–1326

    Article  PubMed  CAS  Google Scholar 

  • Mold CS, Nakayama S, Holzer TJ, Gerwurz H, DuClos TW (1981) C-reactive protein is protective against Streptococcus pneumoniae infection in mice. J Exp Med 154: 1703–1708

    Article  PubMed  CAS  Google Scholar 

  • O’Brien AD, Scher I, Campbell GH, MacDermott RP, Formal SB (1979) Susceptibility of CBA/N mice to infection with Salmonella typhimurium. J Immunol 123: 720–724

    PubMed  Google Scholar 

  • O’Brien AD, Rosenstreich DL, Taylor BA (1980) Control of natural resistance to Salmonella typhimurium and Leishmania donovani in mice by closely linked but distinct genetic loci. Nature 287: 440–442

    Article  PubMed  Google Scholar 

  • O’Brien AD, Rosenstreich DL, Metealf ES, Scher I (1980) Differential sensitivity of inbred mice to Salmonella typhimurium: A model for genetic regulation of innate resistance to bacterial infection. In: Skamene E (ed) Perspectives in immunology: Genetic control of natural resistance to infection and malignancy. Academic, London, pp 101–114

    Google Scholar 

  • Peltola H, Kayhty H, Sivonen A, Makela PH (1977) Haemophilus influenzae type b capsular polysaccharide vaccine in children. Pediatrics 60: 730–737

    PubMed  CAS  Google Scholar 

  • Perlmutter RM, Hansburg D, Briles DE, Nicolotti RA, Davie JM (1978) Subclass restriction of murine anti-carbohydrate antibodies. J Immunol 121: 566–572

    PubMed  CAS  Google Scholar 

  • Perlmutter RM, Crews ST, Douglas R, Sorensen G, Johnson N, Nivera N, Gearhart PJ, Hood L (1984) The generation of diversity in phosphorylcholine-binding antibodies. Adv Immunol 35: 1–59

    Article  PubMed  CAS  Google Scholar 

  • Press JL (1981) The CBA/N defect defines two classes of T cell-dependent antigens. J Immunol 126: 1234–1240

    PubMed  CAS  Google Scholar 

  • Rake G (1936) Pathology of pneumococcus infection in mice following intranasal instillation. J Exp Med 63: 17–31

    Article  PubMed  CAS  Google Scholar 

  • Rosenwasser LJ, Huber BT (1981) The xid gene controls Ia.W39-associated immune response gene function. J Exp Med 153: 1113–1123

    Article  PubMed  CAS  Google Scholar 

  • Scher I (1982) The CBA/N mouse strain: an experimental model illustrating influences of the X- chromosome on immunity. Adv Immunol 33: 1–71

    Article  PubMed  CAS  Google Scholar 

  • Schultz H, Gorer PA, Finlayson MH (1936) The resistance of four mouse lines to bacterial infection. J Hyg 36: 37–49

    Article  Google Scholar 

  • Slack J, Der Balian GP, Nahm M, Davie JM (1980) Subclass restriction of murine antibodies. II. The IgG plaque-forming cell response to thymus-independent type 1 and type 2 antigens in normal mice and mice expressing an X-linked immunodeficiency. J Exp Med 151: 853–862

    Article  PubMed  CAS  Google Scholar 

  • Stein KE, Zopf DA, Miller CB, Johnson BM, Mongini PKA, Ahmed A, Paul WE (1983) Immune response to a thymus-dependent form of B 512 Dextran requires the presence of Lyb-5+ lymphocytes. J Exp Med 157: 657–666

    Article  PubMed  CAS  Google Scholar 

  • Swift HF, Wilson AT, Lancefield RC (1943) Typing group A hemolytic streptococci by M precipitin reactions in capillary pipettes. J Exp Med 78: 127–133

    Article  PubMed  CAS  Google Scholar 

  • Szu SC, Clarke S, Robbins JB (1983) Protection against pneumococcal infection in mice conferred by phosphocholine-binding antibodies: specificity of the phosphocholine binding and relation to several types. Infect Immun 39: 993–999

    PubMed  CAS  Google Scholar 

  • Tomasz A (1967) Choline in the cell wall of a bacterium: novel type of polymer-linked choline in pneumococcus. Science 157: 694–697

    Article  PubMed  CAS  Google Scholar 

  • Wallick S, Claflin JL, Briles DE (1983) Resistance to Streptococcus pneumoniae is induced by a phosphocholine-protein conjugate. J Immunol 130: 2871–2875

    PubMed  CAS  Google Scholar 

  • Webster LT (1933) Inherited and acquired factors in resistance to infection. J Exp Med 57: 819–843

    Article  PubMed  CAS  Google Scholar 

  • White B (1938) The biology of Pneumococcus. Oxford University Press, London, pp 58–612

    Google Scholar 

  • Wood B, Smith MR (1949) The inhibition of surface phagocytosis by the capsular slime layer of pneumococcus type III. J Exp Med 90: 85–95

    Article  PubMed  CAS  Google Scholar 

  • Yother J, Volanakis JE, Briles DE (1982 a) Human C-reactive protein is protective against fatal Streptococcus pneumoniae infection in mice. J Immunol 128: 2374–2376

    CAS  Google Scholar 

  • Yother J, Forman C, Gray B, Briles DE (1982 b) Protection of mice from infection with Streptococcus pneumoniae by anti-phosphocholine antibody. Infect Immun 36: 184–188

    CAS  Google Scholar 

  • Young MN, Williams RE, Claflin JL (1985) The circular dichroism of phosphocholine-specific mouse hybridoma and myeloma proteins: unusual properties of the hybridoma protein 101.6G6. Mol Immunol 22: 305–311

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Briles, D.E. et al. (1986). Genetic Control of the Susceptibility to Pneumococcal Infection. In: Briles, D.E. (eds) Genetic Control of the Susceptibility to Bacterial Infection. Current Topics in Microbiology and Immunology, vol 124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70986-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70986-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16238-4

  • Online ISBN: 978-3-642-70986-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics