Advertisement

A Novel Mechanism by which High Density Lipoprotein Selectively Delivers Cholesterol Esters to the Liver

  • Ray C. Pittman
  • Daniel Steinberg

Abstract

One of the most dramatic developments in the epidemiologic investigation of coronary heart disease risk factors during the last decade has been the mushrooming evidence that a high level of HDL decreases while a low level of HDL increases the risk of clinical disease. A seminal paper by Miller and Miller in 1975 [1] focused attention on this problem by pointing out the several risk factors for coronary heart disease that were associated with low levels of plasma HDL. Despite the high level of interest in this problem and the many studies that have been done, we still do not know exactly how this HDL-coronary heart disease relationship works. By all odds the most widely accepted hypothesis is that HDL serves the function of removing cholesterol from peripheral tissues and carrying it to the liver for reutilization or excretion in the bile [2]. Many studies in cell culture show that HDL is capable of acting as an acceptor of cholesterol from cells overloaded with it [3–8]. On the other hand, delipidated serum is also able to facilitate the removal of cholesterol from cholesterol-loaded cells in culture [9]. More direct evidence is needed before the role of HDL in reverse cholesterol transport can be considered established.

Keywords

Cholesterol Ester Reverse Cholesterol Transport Adrenal Cell Cholesterol Ester Transfer Protein Preferential Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miller GJ, Miller NE (1975) Lancet i: 16–19CrossRefGoogle Scholar
  2. 2.
    Glomset JA (1968) J Lipid Res 9: 155–167PubMedGoogle Scholar
  3. 3.
    Miller NE (1978) Biochem Biophys Acta 529: 131–137PubMedCrossRefGoogle Scholar
  4. 4.
    Daniels RJ, Gurtler LS, Parker TS, Steinberg D (1981) J Biol Chem 256: 4978–4983PubMedGoogle Scholar
  5. 5.
    Daerr WH, Gianturco SH, Patsch JR, Smith LC, Gotto AM Jr (1980) Biochim Biophys Acta 619: 287–301PubMedCrossRefGoogle Scholar
  6. 6.
    Stein O, Vanderhoek J, Stein Y (1976) Biochim Biophys Acta 431: 342–358Google Scholar
  7. 7.
    Innerarity TL, Pitas RE, Mahley RW (1982) Arteriosclerosis 114-124Google Scholar
  8. 8.
    Brown MS, Ho YK and Mahley RW (1980) J Biol Chem 255: 9344–9352PubMedGoogle Scholar
  9. 9.
    Bailey JM (1968) Biochim Biophys Acta 125: 226–236Google Scholar
  10. 10.
    Biesbroeck R, Oram JF, Albers JJ, Bierman EL (1983) J Clin Invest 71: 525–539PubMedCrossRefGoogle Scholar
  11. 11.
    Oram JF, Brinton EA, Bierman EL (1983) J Clin Invest 72: 1611–1621PubMedCrossRefGoogle Scholar
  12. 12.
    Bachorik PS, Franklin FA, Virgil DG, Kwiterovich PO Jr (1982) Biochemistry 21: 5674–5684CrossRefGoogle Scholar
  13. 13.
    Rifici VA, Eder HA (1984) J Biol Chem 259: 13814–13818PubMedGoogle Scholar
  14. 14.
    Bachorik PS, Franklin FA Jr, Virgil DG, Kwiterovich PO Jr (1984) Arteriosclerosis 5: 142–152Google Scholar
  15. 15.
    Pittman RC, Green SR, Attie AD, Steinberg D (1979) J Biol Chem 254: 6876–6879PubMedGoogle Scholar
  16. 16.
    Pittman RC, Carew TE, Glass CK, Green SR, Taylor CA, Attie AD (1983) Biochem J 212: 791–800PubMedGoogle Scholar
  17. 17.
    Glass CK, Pittman RC, Weinstein DB, Steinberg D (1983) Proc Natl Acad Sci USA 80: 5435–5439PubMedCrossRefGoogle Scholar
  18. 18.
    Glass C, Pittman RC, Civen M, Steinberg D (1985) J Biol Chem 260: 744–750PubMedGoogle Scholar
  19. 19.
    Stein O, Halperin G, Stein Y (1978) Biochim Biophys Acta 620: 247–260Google Scholar
  20. 20.
    Stein Y, Stein O, Halperin G (1983) Arteriosclerosis 2: 281–289Google Scholar
  21. 21.
    Krieger M, Brown MS, Faust JR, Goldstein JL (1978) J Biol Chem 253: 4093–4101PubMedGoogle Scholar
  22. 22.
    Morton RE, Zilversmith DB (1981) J Biol Chem 258: 11751–11757Google Scholar
  23. 23.
    Son Y-SC, Zilversmith DB (1984) Biochim Biophys Acta 795: 473–480PubMedCrossRefGoogle Scholar
  24. 24.
    Glass CK, Pittman RC, Keller GA, Steinberg D (1983) J Biol Chem 258: 7161–7167PubMedGoogle Scholar
  25. 25.
    Lasser NL, Roheim PS, Edelstein D, Eder HA (1973) J Lipid Res 14: 1–8PubMedGoogle Scholar
  26. 26.
    Gwynne JT, Strauss JF III (1982) Endocrinol Rev 3: 299–329CrossRefGoogle Scholar
  27. 27.
    Swaney JB, Braithwaite F, Eder HA (1973) J Lipid Res 14: 1–8Google Scholar
  28. 28.
    Weisgraber KH, Mahley RW, Assmann G (1977) Atherosclerosis 28: 121–140PubMedCrossRefGoogle Scholar
  29. 29.
    Barter PJ, Lally JI (1979) Metabolism 28: 230–236PubMedCrossRefGoogle Scholar
  30. 30.
    Carew TE, Beltz WF (1982) in Lipoprotein Kinetics and Modeling (Berman M, Grundy S eds) pp 169–179, Academic Press, New YorkCrossRefGoogle Scholar
  31. 31.
    Sherill BC, Innerarity TL, Mahley RW (1980) J Biol Chem 255: 1804–1807Google Scholar
  32. 32.
    Mahley RW (1982) Med Clin North Am 66: 375–402PubMedGoogle Scholar
  33. 33.
    Weisgraber KH, Mahley RW (1980) J Lipid Res 21: 316–325PubMedGoogle Scholar
  34. 34.
    Biesbroeck R, Oran JF, Albers JJ, Bierman EL (1983) J Clin Invest 71: 525–539PubMedCrossRefGoogle Scholar
  35. 35.
    Weisgraber KH, Mahley RW, Assman G (1977) Atherosclerosis 28: 121–140PubMedCrossRefGoogle Scholar
  36. 36.
    Basu SK, Brown MS, Ho YK, Havel RJ, Goldstein JL (1981) Proc Natl Acad Sci USA 78: 7545–7549PubMedCrossRefGoogle Scholar
  37. 37.
    Blue ML, Williams DL, Zucker S, Khan SA, Blum CB (1983) Proc Natl Acad Sci USA 80: 283–287PubMedCrossRefGoogle Scholar
  38. 38.
    Driscoll DA, Getz GS (1984) J Lipid Res 25: 1368–1379PubMedGoogle Scholar
  39. 39.
    Goldstein JL, Basu SK, Brunschede GY, Brown MS (1976) Cell 7: 85–95PubMedCrossRefGoogle Scholar
  40. 40.
    Hui DY, Innerarity TL, Mahley RW (1981) J Biol Chem 256: 5646–5655PubMedGoogle Scholar
  41. 41.
    Chajek-Shaul T, Friedman G, Halperin O, Stein O, Stein Y (1981) Biochim Biophys Acta 666: 156–164PubMedCrossRefGoogle Scholar
  42. 42.
    Friedman G, Chajek-Shaul T, Stein O, Olivecrona T, Stein Y (1981) Biochim Biophys Acta 666: 154–164Google Scholar
  43. 43.
    Chajek-Shaul T, Friedman G, Stein O, Olivecrona T, Stein Y (1982) Biochim Biophys Acta 712: 200–210PubMedCrossRefGoogle Scholar
  44. 44.
    Karin M, Minta B (1981) J Biol Chem 256: 3245–3252PubMedGoogle Scholar
  45. 45.
    Van Renswounde J, Bridges KR, Harford JB, Klausner RD (1982) Proc Natl Acad Sci USA 79: 6186–6190CrossRefGoogle Scholar
  46. 46.
    Harding C, Heuser J, Stahl P (1983) J Cell Biol 97: 329–339PubMedCrossRefGoogle Scholar
  47. 47.
    Pan BT, Johnstone R (1984) J Biol Chem 259: 9776–9782PubMedGoogle Scholar
  48. 48.
    Dunn WA, Hubbard AL, Aronson NN (1980) J Biol Chem 255: 5971–5978PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Ray C. Pittman
    • 1
  • Daniel Steinberg
    • 1
  1. 1.Division of Endocrinology and Metabolism, Department of MedicineUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations