Mechanisms Responsible for Radioactive Tracer Uptake in Malignancies

  • W. D. Kaplan
Conference paper

Abstract

Tumors, a collection of cells altered so as to reproduce true to type, represent a growth against which the host can demonstrate no adequate control mechanisms. The tumor cell determines its own activities, irrespective of the biologic rules governing the growth of normal cells. Without this single characteristic, there would be no tumors.

Keywords

Lymphoma Radionuclide Flare Neurol Ferritin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Francis MD, Tofe AJ, Benedict JJ et al. (1979) Imaging the skeletal system. Radio Pharm II. Proceedings Second International Symposium on Radiopharmaceuticals, March 19–22, 1979, Seattle, WA. Society of Nuclear Medicine, New York, pp 603–614Google Scholar
  2. 2.
    Arnstein NB, Harbert JC, Byrne PJ (1984) Efficacy of bone and liver scanning in breast cancer patients treated with adjuvant chemotherapy. Cancer 54:2243–2247PubMedCrossRefGoogle Scholar
  3. 3.
    Rossleigh MA, Lovegrove FTA, Reynolds PM et al. (1984) The assessment of response to therapy of bone metastases in breast cancer. Aust NZ J Med 14:19–22CrossRefGoogle Scholar
  4. 4.
    Drum DE (1978) Optimizing the clinical value of hepatic scintiphotography. Semin Nucl Med 8:346–357PubMedCrossRefGoogle Scholar
  5. 5.
    Drum DE, Beard JM (1976) Scinitgraphic criteria for hepatic metastases from cancer of the colon and breast J Nucl Med 17:677–680PubMedGoogle Scholar
  6. 6.
    Lin MS, Donati RM (1981) “Mottled” liver scan in giant hepatomegaly due to intrasinusoidal metastasis of small cell lung cancer. Clin Nucl Med 6:496–497PubMedGoogle Scholar
  7. 7.
    Schenk P, zum Winkel K, Becker J (1966) Die Szintigraphie des parasternalen Lymphsystems. Nucl Med 5:388–396Google Scholar
  8. 8.
    Ege GN (1976) Internal Mammary Lymphoscintigraphy — the rationale, technique, interpretation, and clinical application. Radiology 118:101–107PubMedGoogle Scholar
  9. 9.
    Kaplan WD (1983) Iliopelvic Lymphoscintigraphy. Semin Nucl Med 13:42–53PubMedCrossRefGoogle Scholar
  10. 10.
    Sullivan DC, Croker BP Jr, Harris CC et al. (1981) Lymphoscintigraphy in malignant melanoma: 99m-Tc antimony sulfur colloid. Am J Roentgenol 137:847–851Google Scholar
  11. 11.
    Matsuo S (1974) Studies of the metastasis of breast cancer to lymph nodes — II. Diagnosis of metastasis to internal mammary nodes using radiocolloid. Acta Med Okayama 28:361–371PubMedGoogle Scholar
  12. 12.
    Kaplan WD, Garnick MB, Richie JP (1983) Iliopelvic radionuclide lymphoscintigraphy in patients with testicular cancer. Radiology 147:231–235PubMedGoogle Scholar
  13. 13.
    Ege GN, Clark RM (1980) Internal mammary lymphoscintigraphy in the conservative surgical management of breast carcinoma. Clin Radiol 31:559–563PubMedCrossRefGoogle Scholar
  14. 14.
    Hoffer P (1980) Gallium: Mechanisms. J Nucl Med 21:282–285PubMedGoogle Scholar
  15. 15.
    Larson SM (1978) Mechanisms of localization of gallium-67 in tumors. Semin Nucl Med 8:193–203PubMedCrossRefGoogle Scholar
  16. 16.
    Hayes RL, Rafter JJ, Byrd BL et al. (1981) Studies of the in-vivo entry of Ga-67 into normal and malignant tissue. J Nucl Med 22:325–332PubMedGoogle Scholar
  17. 17.
    Swartzendruber DC, Nelson B, Hayes RL (1971) Gallium-67 localization in lysosomallike granules of leukemic and non-leukemic murine tissues. J Natl Cancer Inst 46:941–952PubMedGoogle Scholar
  18. 18.
    Anderson KC, Leonard RCF, Cannellos GP et al. (1983) High-dose gallium imaging in lymphoma. Am J Med 75:327–331PubMedCrossRefGoogle Scholar
  19. 19.
    Ancri D, Basset J-Y, Lonchampt MF et al. (1978) Diagnosis of cerebral lesions by thallium-201. Radiology 128:417–422PubMedGoogle Scholar
  20. 20.
    Kaplan WD, Takvorian RW, Morris JH et al. (1985) Thallium-201 brain imaging: A comparative study with pathologic correlation. J Nucl Med 26:P75 (abstr.)Google Scholar
  21. 21.
    Kaplan WD, Ensminger WD, Smith EH et al. (1981) Radionuclide angiography to predict patient response to hepatic artery chemotherapy. Cancer Treat Rep 64:1217–1222Google Scholar
  22. 22.
    Hatanaka M (1974) Transport of sugars in tumor cell membranes. Biochem Biophys Acta 355:77–104PubMedGoogle Scholar
  23. 23.
    Weber G: Enzymology in cancer cells. N Engl J Med 296:486–493Google Scholar
  24. 24.
    Beaney RP (1984) Positron emission tomography in the study of human tumors. Semin Nucl Med 14:324–341PubMedCrossRefGoogle Scholar
  25. 25.
    DiChiro G, DeLaPaz RL, Brooks RA et al. (1982) Glucose utilization of cerebral gliomas measured by 18F Fluorodeoxyglucose (18FDG) and positron emission tomography. J Neurol 32:1323–1329Google Scholar
  26. 26.
    Weiland DM, Wu JL, Brown LE et al. (1980) Radiolabeled adrenergic neuron blocking agents: adrenomedullary imaging with 131 I iodobenzylguanidine. J Nucl Med 21:349–353Google Scholar
  27. 27.
    Weiland AM, Brown LE, Tobes MC et al. (1981) Imaging the primate adrenal medulla with I 123 and I 131 meta-iodobenzylguanidine: concise communication. J Nucl Med 22:358–364Google Scholar
  28. 28.
    Lynn MD, Shapiro B, Sisson JC et al. (1984) Portrayal of pheochromocytomas and normal human adrenal medulla by m-123 I iodobenzylguanidine: concise communication. J Nucl Med 25:436–440PubMedGoogle Scholar
  29. 29.
    Kimmig B, Brandeis WE, Eisenhut M et al. (1984) Scintigraphy of neuroblastoma with I 131 meta-iodobenzylguanidine: J Nucl Med 25:773–775PubMedGoogle Scholar
  30. 30.
    Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of proven defined specificity. Nature 256:495–497PubMedCrossRefGoogle Scholar
  31. 31.
    Goldenberg DM, DeLand F, Kim E et al. (1978) Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N Engl J Med 298:1384–1386PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • W. D. Kaplan
    • 1
  1. 1.Division of Nuclear MedicineDana-Farber Cancer Inst.BostonUSA

Personalised recommendations