Skip to main content

Photosynthetic Light Reactions — Physical Aspects

  • Chapter
Photosynthesis III

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 19))

Abstract

Of the sunlight incident on the surface of the earth, about 2% is captured and stored by photosynthetic organisms. This volume describes the many facets of how that process is accomplished. In this chapter we consider the “physical part”. This begins with the absorption of incident radiation by the photosynthetic pigments. The first response by the plant is mediated by electrons, which change orbitals as a consequence of photon absorption to produce an excited state of a molecule or of a collection of molecules. This excitation then migrates among antenna pigment molecules until it reaches a photosynthetic reaction center, where separation of the electron from a positively charged hole occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archer MD (1975) Photochemical aspects of solar energy conversion. Photochemistry 6:739–764

    CAS  Google Scholar 

  • Birks JB (1970) Photophysics of aromatic molecules. Wiley-Interscience, London

    Google Scholar 

  • Casti TE, Otvos JW (1986) Solar irradiance: The effect of dimensionality on solar spectrum curves. J Chem Educ March 1986

    Google Scholar 

  • Cogdell RJ (1983) Photosynthetic reaction centers. Annu Rev Plant Physiol 34:21–45

    Article  CAS  Google Scholar 

  • Davis MS, Forman A, Fajer J (1979) Ligated chlorophyll cation radicals. Their function in photosystem II of plant photosynthesis. Proc Natl Acad Sci USA 76:4170–4174

    Article  PubMed  CAS  Google Scholar 

  • Davis RC, Ditson SL, Fentiman AF, Pearlstein RM (1981) Reversible wavelength shifts of chlorophyll induced by a point charge. J Am Chem Soc 103:6823–6826

    Article  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1984) X-ray structure analysis of a membrane protein complex: Electron density map at 3Â resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180:385–398

    Article  PubMed  CAS  Google Scholar 

  • Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850

    Article  CAS  Google Scholar 

  • Förster Th (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern quantum chemistry, part 3. Academic Press, London New York, pp 93–137

    Google Scholar 

  • Gast P, Wasielewski MR, Schiffer M, Norris JR (1983) Orientation of the primary donor in single crystals of Rhodopseudomonas viridis reaction centers. Nature 305:451–452

    Article  CAS  Google Scholar 

  • Glazer AN (1983) Comparative biochemistry of photosynthetic light-harvesting systems. Annu Rev Biochem 52:125–157

    Article  PubMed  CAS  Google Scholar 

  • Greenbaum E, Guillard RRL, Sunda WG (1983) Hydrogen and oxygen photoproduction by marine algae. Photochem Photobiol 37:649–655

    Article  CAS  Google Scholar 

  • Holten D, Hoganson C, Windsor MW, Schenck CC, Parson WW, Migus A, Fork RL, Shank CV (1980) Subpicosecond and picosecond studies of electron transfer intermediates in Rhodopseudomonas sphaeroides reaction centers. Biochim Biophys Acta 592:461–477

    Article  PubMed  CAS  Google Scholar 

  • Joran AD, Leland BA, Geller GG, Hopfield JJ, Dervan PB (1984) Models for photochemical electron transfer at fixed distances. J Am Chem Soc 106:6090–6092

    Article  CAS  Google Scholar 

  • Knox RS (1977) Photosynthetic efficiency and exciton transfer and trapping. In: Barber J (ed) Topics in photosynthesis, vol II. Elsevier, Amsterdam New York Oxford, pp 55–97

    Google Scholar 

  • Maggiora LL, Maggiora GM (1984) Protonated Schiffs base chlorophyll: A model for P700? Photochem Photobiol 39:847–849

    Article  CAS  Google Scholar 

  • Matthews BW, Fenna RE (1980) Structure of a green bacteriochlorophyll protein. Ace Chem Res 13:309–317

    Article  CAS  Google Scholar 

  • Michel H (1982) Three-dimensional crystals of a membrane protein complex. The photo-synthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 158:567–572

    Article  PubMed  CAS  Google Scholar 

  • Paillotin G, Vermeglio A, Breton J (1979) Orientation of reaction center and antenna chromophores in the photosynthetic membrane of Rhodopseudomas viridis. Biochim Biophys Acta 545:249–264

    Article  PubMed  CAS  Google Scholar 

  • Phillipson KD, Sauer K (1972) Exciton interaction in a bacteriochlorophyll-protein from Chloroppseudomonas ethylica. Absorption and circular dichroism at 77 K. Biochemistry 11:1880–1885

    Article  Google Scholar 

  • Rich PR (1984) Electron and proton transfers through quinones and cytochrome be complexes. Biochim Biophys Acta 768:53–79

    Article  PubMed  CAS  Google Scholar 

  • Sauer K (1975) Primary events and the trapping of energy. In: Govindjee (ed) Bioenerget-ics of photosynthesis. Academic Press, London New York, pp 115–181

    Google Scholar 

  • Scherz A, Parson WW (1984) Exciton interactions in dimers of bacteriochlorophyll and related molecules. Biochim Biophys Acta 766:666–678

    Article  CAS  Google Scholar 

  • Seely GR (1973) Effects of spectral variety and molecular orientation on energy trapping in the photosynthetic unit: A model calculation. J Theor Biol 40:173–187

    Article  PubMed  CAS  Google Scholar 

  • Seely GR, Jensen RG (1965) Effect of solvent on the spectrum of chlorophyll. Spectro-chim Acta 21-.1835–1845

    Article  CAS  Google Scholar 

  • Shipman LL, Cotton TM, Norris JR, Katz JJ (1976) An analysis of the visible absorption spectrum of chlorophyll a monomer, dimer and oligomers in solution. J Am Chem Soc 98:8222–8230

    Article  PubMed  CAS  Google Scholar 

  • Shuvalov VA, Asadov AA (1979) Arrangement and interaction of pigment molecules in reaction centers of Rhodopseudomonas viridis. Photodichroism and circular dichroism of reaction centers at 100 K. Biochim Biophys Acta 545:296–308

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA, Arntzen CJ (1983) Regulation of chloroplast membrane function: Protein phosphorylation changes the spatial organization of membrane components. J Cell Biol 97:1327–1337

    Article  PubMed  CAS  Google Scholar 

  • Strain HH, Svec WA (1966) Extraction, separation, estimation and isolation of the chlorophylls. In: Vernon LP, Seely GR (eds) The chlorophylls. Academic Press, London New York, pp 21–66

    Google Scholar 

  • Thornber JP, Trosper TL, Strouse CE (1978) Bacteriochlorophyll in vivo: Relationship of spectral forms to specific membrane components. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum, New York London, pp 133–160

    Google Scholar 

  • Thorne SW, Duniec JT (1983) The physical principles of energy transduction in chloroplast thylakoid membranes. Q Rev Biophys 16:197–278

    Article  PubMed  CAS  Google Scholar 

  • Ward B, Chang CK, Young R (1984) Spectral shifts upon reversible modifications of CHO peripheral substituents in porphyrin, chlorin and bacteriochlorin. A phenomeno-logical explanation for the red shift of protonated Schiff base. J Am Chem Soc 106:3943–3950

    Article  CAS  Google Scholar 

  • Wasielewski MR, Niemczyk MP (1984) Photoinduced electron transfer in meso-triphenyl-triptycenylporphyrin-quinones. J Am Chem Soc 106:5043–5045

    Article  CAS  Google Scholar 

  • Zinth W, Kaiser W, Michel H (1983) Efficient photochemical activity and strong dichroism of single crystals of reaction centers from Rhodopseudomonas viridis. Biochim Biophys Acta 723:128–131

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sauer, K. (1986). Photosynthetic Light Reactions — Physical Aspects. In: Staehelin, L.A., Arntzen, C.J. (eds) Photosynthesis III. Encyclopedia of Plant Physiology, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70936-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70936-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70938-8

  • Online ISBN: 978-3-642-70936-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics