On the Economics of Binding Energies

  • William P. Jencks
Conference paper

Abstract

There is a widespread impression that the best, most specific small molecules that make things happen in biological processes are the molecules that bind most strongly to a specific binding site on a macromolecule. Evolution will certainly favor molecules that bind strongly enough to their receptor site that a significant fraction of these sites are occupied, under conditions when it is desirable for some event that results from the binding to occur. However, many active molecules do not bind very strongly to their receptor site and inactive molecules often bind more strongly that active ones. One reason that very strong binding is uncommon is that it is usually just as important for a molecule to be able to dissociate from its binding site as for it to bind readily; very large equilibrium constants for association lead to unacceptably slow rate constants for dissociation even if binding is diffusion controlled. However, a more fundamental reason that the most effective small molecules do not bind very strongly arises from the economics of the utilization of binding energies through interaction energies — as is well known, but often forgotten.

Keywords

Hydrolysis Catalysis Dehydration Thiol Macromolecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wyman, J., Jr. (1964) Adv. Prot. Chem. 19, 223-286. Weber, G. (1975) Adv. Prot. Chem. 29, 1–83. Hill, T. C. “Free Energy Transduction in Biology”, Academic Press, New York, 1977Google Scholar
  2. 2.
    These terms are preferred to “coupling energy”, in order to avoid the implication that the interaction energy is responsible for coupling. The mechanism of coupling is described by a set of rules that are not necessarily related directly to the interaction energies of a coupled vectorial system, as pointed out belowGoogle Scholar
  3. 3.
    Goody, R. S., Hofmann, W. and Mannherz, H. G. (1977) Eur. J. Biochem. 78, 317–324CrossRefGoogle Scholar
  4. 4.
    Konrad, M. and Goody, R. S. (1982) Eur. J. Biochem. 128, 547–555CrossRefGoogle Scholar
  5. 5.
    Botts, J. and Morales, M. (1953) Trans. Faraday Soc. 49, 696–707.CrossRefGoogle Scholar
  6. Highsmith, S. (1976) J. Biol. Chem. 251, 6170–6172Google Scholar
  7. 6.
    Simmons, R. M. and Hill, T. L. (1976) Nature 263, 615–618CrossRefGoogle Scholar
  8. 7.
    Sleep, J. A. and Smith, S. J. (1981) Curr. Topics Bioenergetics 11, 239–286Google Scholar
  9. 8.
    Holmes, K. C. and Goody, R. S. (1983) Biochim. Biophys. Acta 726, 13–39Google Scholar
  10. 9.
    Jencks, W. P. (1980) Adv. Enzymol. 51, 75–106Google Scholar
  11. 10.
    Mitchell, P. (1974) FEBS Lett. 43, 189–194CrossRefGoogle Scholar
  12. 11.
    Kayalar, C., Rösing, J. and Boyer, P. D. (1977) J. Biol. Chem. 252, 2486–2491.Google Scholar
  13. Rosen, G., Gresser, M., Vinkler, C. and Boyer, P. D. (1979) J. Biol. Chem. 254, 10654-10661Google Scholar
  14. 12.
    Grubmeyer, C., Cross, R. L. and Penefsky, H. S. (1982) J. Biol. Chem. 257, 12092–12100Google Scholar
  15. 13.
    Feldman, R. I. and Sigman, D. S. (1982) J. Biol. Chem. 257, 1676–1683Google Scholar
  16. 14.
    Page, M. I. and Jencks, W. P. (1971) Proc. Natl. Acad. Sei. USA 68, 1678–1683Google Scholar
  17. 15.
    Page, M. I. (1973) Chem. Soc. Rev. 2, 295–323Google Scholar
  18. 16.
    Jencks, W. P. (1975) Adv. Enzymol. 43, 219–410Google Scholar
  19. 17.
    Penefsky, H. Personal communicationGoogle Scholar
  20. 18.
    Kasahara, M. and Penefsky, H. S. (1978) J. Biol. Chem. 253, 4180–4187Google Scholar
  21. 19.
    Jencks, W. P. (1981) Proc. Natl. Acad. Sei. USA 78, 4046–4050Google Scholar
  22. 20.
    Bagshaw, C. R. and Trentham, D. R. (1974) Biochem. J. 141, 331–349.Google Scholar
  23. Trentham, D. R., Eccleston, J. F. and Bagshaw, C. R. (1976) O. Rev. Biophysics 9, 217–281Google Scholar
  24. 21.
    Any mutual destabilization of bound ADP and P1 that is not relieved upon ATP formation will decrease the observed binding of both and will not affect ΔG1; it will increase the fraction of ΔG1 that arises from binding ADP and P1 individually. If P1 binds to a non-produetive site on M (such as part of the ADP site), the productive binding site must have weaker binding. Therefore the contribution of AGS will be underestimated and that of ΔG12 overestimated in this Situation alsoGoogle Scholar
  25. 22.
    Boyer, P. D. (1975) FEBS Lett. 58, 1–6CrossRefGoogle Scholar
  26. 23.
    Boyer’s model [22] elearly deseribes a set of properties that can account for the coupling of ATP synthesis to proton transport. The model involves the reversible synthesis of ATP from bound ADP and Pt when the unprotonated binding site moves from one side of the membrane to the other. Recent work has directly demonstrated the reversible synthesis of ATP at the active site without proton transport [12], so that the rules for a complete model should allow these processes to occur in separate stepsGoogle Scholar
  27. 24.
    Cross, R. L., Grubmeyer, C. and Penefsky, H. S. (1982) J. Biol. Chem. 257, 12101–12105Google Scholar
  28. 25.
    Hutton, R. L. and Boyer, P. D. (1979) J. Biol. Chem. 254, 9990–9993Google Scholar
  29. 26.
    Sleep, J. A. and Hutton, R. L. (1978) Biochemistry 17, 5423–5430CrossRefGoogle Scholar
  30. 27.
    Cantley, L. C. (1981) Curr. Topics Bioenerg. 11, 201–237Google Scholar
  31. 28.
    de Meis, L. and Vianna, A. L. (1979) Ann. Rev. Biochem. 48, 275–292Google Scholar
  32. 29.
    Taniguchi, K. and Post, R. L. (1975) J. Biol. Chem. 250, 3010–3018Google Scholar
  33. 30.
    Knowles, A. F. and Racker, E. (1975) J. Biol. Chem. 250, 1949–1951Google Scholar
  34. 31.
    Pickart, C. M. and Jencks, W. P. (1984) J. Biol. Chem. 259, 1629–1643Google Scholar
  35. 32.
    Jencks, W. P. (1983) Current Topics in Membranes and Transport 19, 1–19Google Scholar
  36. 33.
    Pauling, L. (1948) Amer. Scientist 36, 58Google Scholar
  37. 34.
    Moore, S. A. and Jencks, W. P. (1982) J. Biol. Chem. 257, 10893–10907Google Scholar
  38. 35.
    Jencks, W. P. In “Molecular Biology, Biochemistry and Biophysics”, Vol. 32, Chapeville, F. and Haenni, A.-L., eds., Springer-Verlag: New York, 1980, pp. 3–25Google Scholar
  39. 36.
    Kemp, D. S. and Paul, K. (1970) J. Am. Chem. Soc. 92, 2553–2554Google Scholar
  40. 37.
    Vernon, C. A. (1967) Proc. R. Soc. London, Ser. B 167, 389–401Google Scholar
  41. 38.
    Levitt, M. Quoted in Ford, L. O., Johnson, L. N., Machin, P. A., Phillips, D. C. and Tjian, R. (1974) J. Mol. Biol. 88, 349–371Google Scholar
  42. 39.
    Franklin, T. J. (1980) Biochem. Pharmacol. 29, 853–856.CrossRefGoogle Scholar
  43. Franklin, T. J. (1980) Trends in Pharmacol. Sei. 1, 430–433Google Scholar
  44. 40.
    Katz, B. and Thesleff, S. (1957) J. Physiol. 138, 63–80Google Scholar
  45. 41.
    Goldstein, A., Aronow, L. and Kaiman, S. M. (1974) “Principles of Drug Action: The Basis of Pharmacology”, 2nd ed., John Wiley & Sons: New York, pp. 82–111.Google Scholar
  46. Ariens, E. J. (1979) Trends in Pharmacol. Sei. 1, 11–15Google Scholar
  47. 42.
    Howlett, A. C., Arsdale, P. M. V. and Gilman, A. G. (1978) Mol. Pharmacol. 14, 531–539Google Scholar
  48. 43.
    U’Prichard, D. C., Greenberg, D. A. and Snyder, S. H. (1977) Mol. Pharmacol. 13, 454–473Google Scholar
  49. 44.
    Metzenberg, R. L., Hall, L. M., Marshall, M. and Cohen, P. P. (1957) J. Biol. Chem. 229, 1019–1025Google Scholar
  50. 45.
    Kaziro, Y. (1978) Biochim. Biophys. Acta 505, 95–127Google Scholar
  51. 46.
    Fersht, A. R. (1981) Proc. R. Soc. London, Ser. B 212, 351–379Google Scholar
  52. 47.
    Cassel, D. and Seiinger, Z. (1977) Proc. Natl. Acad. Sei. USA 74, 3307–3311Google Scholar
  53. 48.
    Boyd, N. D. and Cohen, J. B. (1980) Biochemistry 19, 5353-5358 and 5344–5353Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • William P. Jencks
    • 1
  1. 1.Graduate Department of BiochemistryBrandeis UniversityWalthamUSA

Personalised recommendations