Advertisement

Designed Host-Guest Relationships

  • D. J. Cram
Conference paper

Abstract

Complexing partners conveniently divide into two important classes. Hosts contain convergently-arranged binding sites, and are synthetic counterparts of the receptor sites of enzymes, nucleic acids, proteins of the immune system, or ionophores. Guests posses divergently-arranged binding sites, and are the synthetic counter-parts of substrates, inhibitors, or drugs. Metal cations also serve as guests. Complexes are composed of hosts and guests held together in solution in a definite structural relationship. Solvation is usually non-structured complexation which competes with structured complexation between hosts and guests. Forces available for complexation are: hydrogen-bonding; ion-pairing; pi-acid to pi-base attractions; metal ion-to-ligand attractions; van der Waals attractions; and the entropic component of desolvation.

Keywords

Rate Acceleration Vinyl Ketone Uncatalyzed Reaction Structural Recognition Methyl Vinyl Ketone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Helgeson, G. R. Weisman, J. L. Toner, T. L. Tarnowski, Y. Chao, J. M. Mayer, D. J. Cram, J. Am. Chem. Soc. 101 (1979) 4928–4941CrossRefGoogle Scholar
  2. 2.
    G. M. Lein, D. J. Cram, J. Chem. Soc. Chem. Commun. (1982) 301–304Google Scholar
  3. 3.
    D. J. Cram, K. N. Trueblood, Topics in Current Chemistry, Host Guest Complexation Chemistry I, Springer-Verlag, Berlin 1981, pp. 43–106CrossRefGoogle Scholar
  4. 4.
    D. J. Cram, G. M. Lein, T. Kaneda, R. C. Helgeson, C. B. Knobler, E. Maverick, K. N. Trueblood, J. Am. Chem. Soc. 103 (1981) 6228–6232CrossRefGoogle Scholar
  5. 5.
    D. J. Cram, S. B. Brown, T. Taguchi, M. Feigel, E. Maverick, K. N. Trueblood, J. Am. Chem. Soc. 106 (1984) 695–701CrossRefGoogle Scholar
  6. 6.
    S. P. Artz, D. J. Cram, J. Am. Chem. Soc. 106 (1984) 2160–2171CrossRefGoogle Scholar
  7. 7.
    D. J. Cram, I. B. Dicker, C. B. Knobler, K. N. Trueblood, J. Am. Chem. Soc. 104 (1982) 6828–6830CrossRefGoogle Scholar
  8. 8.
    T. Anthonsen, D. J. Cram, J. Chem. Soc. Chem. Commun. (1983) 1414–1416Google Scholar
  9. 9.
    D. J. Cram, G. D. Y. Sogah, J. Chem. Soc. Chem. Commun. (1981) 625–628Google Scholar
  10. 10.
    R. C. Helgeson, J.-P. Mazaleyrat, D. J. Cram, J. Am. Chem. Soc. 103 (1981) 3929–3931CrossRefGoogle Scholar
  11. 11.
    J.-P. Mazaleyrat, D. J. Cram, J. Am. Chem. Soc. 103 (1981) 4585–4596CrossRefGoogle Scholar
  12. 12.
    J. M. Wilson, D. J. Cram, J. Am. Chem. Soc. 104 (1982) 881–884CrossRefGoogle Scholar
  13. 13.
    D. J. Cram, H. E. Katz, I. B. Dicker, J. Am. Chem. Soc. 106 (1984) 4987–5000CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • D. J. Cram
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations