From Synchrony to Harmony: Ideas on the Function of Neural Assemblies and on the Interpretation of Neural Synchrony

  • P. Johannesma
  • A. Aertsen
  • H. Van Den Boogaard
  • J. Eggermont
  • W. Epping

Abstract

Point of departure are experimental data acquired by simultaneous recording of the activity of a number (2–16) of individual neurons during presentation of a sensory stimulus. The area under investigation is the auditory midbrain (Torus semicircularis) of the immobilized grassfrog (Rana temporaria L.). The sensory stimuli are both artificial (noise, tones and clicks) and natural sounds (vocalizations and environmental sounds). The goal of investigation is an insight into the neural representation of the sensory environment.

Keywords

Entropy Coherence Convolution Lution Tral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aertsen AMHJ, Johannesma PIM (1981a) The spectro-temporal receptive field. A functional characterization of auditory neurons. Biol Cybern 42:133–143PubMedCrossRefGoogle Scholar
  2. Aertsen AMHJ, Johannesma PIM (1981b) A comparison of the spectro-temporal sensitivity of auditory neurons to tonal and natural stimuli. Biol Cybern 42:145–156PubMedCrossRefGoogle Scholar
  3. Boogaard HFP van den, Johannesma PIM (1984) The Master Equation for Neural Interaction. IMA J Math Appl Med Biol 1:365–389PubMedCrossRefGoogle Scholar
  4. Boogaard HFP van den, Hesselmans GHFM, Johannesma PIM (1985) Transformation of point processes, correlation functions and system identification. SubmittedGoogle Scholar
  5. Braitenberg V (1977) Cell assemblies in the cerebral cortex. In: Hein R, Palm G (eds) Theoretical approaches to complex systems. Lecture notes in biomathematics, vol 21. Springer, Berlin Heidelberg New York, pp 171–188Google Scholar
  6. Caianiello ER (1961) Outline of a theory of thought processes and thinking machines. J Theor Biol 1:209CrossRefGoogle Scholar
  7. Eggermont JJ, Aertsen AMHJ, Johannesma PIM (1983a) Quantitative characterisation procedure for auditory neurons based on the spectro-temporal receptive field. Hearing Res 10:167–190CrossRefGoogle Scholar
  8. Eggermont JJ, Epping WJM, Aertsen AMHJ (1983b) Stimulus dependent neural correlations in the auditory midbrain of the grassfrog (Rana temporaria L.). Biol Cybern 47:103–117PubMedCrossRefGoogle Scholar
  9. Eggermont JJ, Johannesma PIM, Aertsen AMHJ (1983c) Reverse correlation methods in auditory research. Q Rev Biophys 16:341–414PubMedCrossRefGoogle Scholar
  10. Epping W, Boogaard H van den, Aertsen A, Eggermont J, Johannesma P (1984) The neurochrome: an identity preserving representation of activity patterns from neural population. Biol Cybern 50:235–240PubMedCrossRefGoogle Scholar
  11. Gerstein GL (1970) Functional association of neurons: detection and interpretation. In: Schmitt FO, Quarton GC, Melnechuk T, Adelman G (eds) The neurosciences: 2nd Study Program. Rockefeller Univ Press, New York, pp 648–661Google Scholar
  12. Gerstein GL, Michalski A (1981) Firing synchrony in a neural group: Putative sensory code. In: Székely G, Lâbos E, Damjanovich S (eds) Neural communication and control. Adv Physiol Sci vol 30. Pergamon Press, Akad Kiado, Budapest, pp 93–102Google Scholar
  13. Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. Hebb DO (1949) The organization of behavior. A neuropsychological theory. Wiley, New York; Chapman and Hall, LondonGoogle Scholar
  15. Johannesma PIM (1972) The pre-response stimulus ensemble of neurons in the cochlear nucleus. In: Cardozo BL (ed) Proc IPO Symp Hearing Theory, EindhovenGoogle Scholar
  16. Johannesma PIM (1980) Functional identification of auditory neurons based on stimulus-event correlations. In: Brink G van den, Bilsen FA (eds) Psychophysical, physiological and behavioural studies in hearing. Delft Univ Press, pp 77–84CrossRefGoogle Scholar
  17. Johannesma PIM (1981) Neural representation of sensory stimuli and sensory interpretation of neural activity. Neural communication and control. Adv Physiol Sci 30:103–125Google Scholar
  18. Johannesma PIM, Aertsen AMHJ (1982) Statistical and dimensional analysis of the neural representation of the acoustic biotope of the frog. J Med Syst 6(4):399–421PubMedCrossRefGoogle Scholar
  19. Johannesma PIM, Boogaard HFP van den (1985) Stochastic formulation of neural interaction. Acta Math Appl 4:201–224CrossRefGoogle Scholar
  20. Johannesma P, Eggermont J (1983) Receptive fields of auditory neurons in the midbrain of the frog as functional elements of acoustic communication. In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Publ, New York, pp 901–910Google Scholar
  21. Palm G (1982) Neural assemblies. An alternative approach in artificial intelligence. Studies of brain function, vol VII. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. Scheich H (1977) Central processing of complex sounds and feature analysis. Recognition of complex acoustic signals. In: Bullock TH (ed) Life Sci Res Rep, vol V. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. Snyder DL (1975) Random point processes. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • P. Johannesma
    • 1
  • A. Aertsen
    • 2
  • H. Van Den Boogaard
    • 1
  • J. Eggermont
    • 1
  • W. Epping
    • 1
  1. 1.Department of Medical Physics and BiophysicsUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Max Planck Institut für Biologische KybernetikTübingenGermany

Personalised recommendations