Advertisement

Brain Theory pp 253-257 | Cite as

David Marr: A Theory of the Cerebellar Cortex

A Model in Brain Theory for the “Galilean Combination of Simplification, Unification and Mathematization”
  • A. J. Pellionisz
Conference paper

Abstract

The brilliant but tragically short-lived — indeed, meteoric — career of David Marr was catapulted into orbit by his “Theory of the Cerebellar Cortex” (1969). One need not belabor the details of this well-publicized theory here (cf. Eccles 1973, Llinàs 1981, Ito 1984, Pellionisz 1985). Rather, three general observations on the theory will be briefly discussed.

Keywords

Purkinje Cell Cerebellar Cortex Parallel Fiber Climbing Fiber Cerebellar Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus J (1971) A theory of cerebellar function. Math Biosci 10:25–61CrossRefGoogle Scholar
  2. Albus JR (1981) Brains, behavior and robotics. McGraw-Hill, New YorkGoogle Scholar
  3. Arbib MA, Franklin GF, Nilsson N (1968) Some ideas on information processing in the cerebellum. In: Caianiello ER (ed) Neuronal networks. Springer, Berlin Heidelberg New York, pp 43–58Google Scholar
  4. Bloedel JR, Ebner TJ, Qi-Xiang Yu (1983) Increased responsiveness of Purkinje cells associated with climbing fiber inputs to neighboring neurons. J Neurophysiol 50:220–239PubMedGoogle Scholar
  5. Braitenberg V (1967) Is the cerebellar cortex a biological clock in the millisecond range? In: Fox CA, Snider RS (eds) Progress in brain research, vol 25. The cerebellum. Elsevier, Amsterdam, pp 334–346Google Scholar
  6. Brindley GS (1964) The use made by the cerebellum of the information that it receives from sense organs. IBRO Bull 3:80Google Scholar
  7. Churchland PS (1986) Neurophilosophy: Towards a unified understanding of the mind-brain. Bradford Books/MIT Press, Boston, MassachusettsGoogle Scholar
  8. Crick FHC (1979) Thinking about the brain. Sci Am 241:219–232PubMedCrossRefGoogle Scholar
  9. Eccles JC (1973) The cerebellum as a computer: Patterns in space and time. J Physiol London 229:1–32PubMedGoogle Scholar
  10. Eccles JC, Ito M, Szentàgothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. Flourens P (1842) Recherches experimentales sur les proprietes et les fonctions du systeme nerveux dans les animaux vertebres, 2nd edn. BailliereGoogle Scholar
  12. Grossberg S (1969) On learning of spatiotemporal patterns by networks with ordered sensory and motor components. 1. Excitatory components of the cerebellum. Stud Appl Math 48:105–132Google Scholar
  13. Hebb DO (1949) The organization of behaviour. Wiley, New YorkGoogle Scholar
  14. Helmholtz H (1896) Handbuch der Physiologischen Optik. Voss, LeipzigGoogle Scholar
  15. Hodgkin AL, Huxley AR (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (London) 1176:500–544Google Scholar
  16. Holmes G (1939) The cerebellum in man. Brain 63:1CrossRefGoogle Scholar
  17. Ito M (1984) The cerebellum and neural control. Raven Press, New YorkGoogle Scholar
  18. Ito M, Sakurai MK, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol (London) 324:113–134Google Scholar
  19. Llinàs R (1981) Cerebellar modeling. Nature (London) 291:279–280CrossRefGoogle Scholar
  20. Llinàs R, Pellionisz A (1985) Cerebellar function and the adaptive feature of the central nervous system. In: Berthoz A, Melvill-Jones G (eds) Reviews of oculomotor research, vol I. Adaptive mechanisms in gaze control. Elsevier, Amsterdam, pp 223–231Google Scholar
  21. Llinàs R, Simpson JI (1981) Cerebellar control of movement. In: Towe AL, Luschei ES (eds) Handbook of behavioral neurobiology, vol V. Motor coordination. Plenum Press, New York, pp 231–302Google Scholar
  22. Marr D (1969) A theory of the cerebellar cortex. J Physiol (London) 202:437–470Google Scholar
  23. Marr D (1982) Vision. A computational investigation into the human representation and processing of visual information. Freeman, San FranciscoGoogle Scholar
  24. Pellionisz A (1985) Tensorial brain theory in cerebellar modeling. In: Bloedel et al. (eds) Cerebellar functions. Springer, Berlin Heidelberg New York, pp 201–229Google Scholar
  25. Pellionisz A, Llinàs R (1985) Tensor network theory of the metaorganization of functional geometries in the CNS. Neuroscience 16:245–273PubMedCrossRefGoogle Scholar
  26. Rosenblatt F (1959) Two theorems of statistical separability in the perceptron. Proceedings of Symposium on the mechanization of thought process. HMSO, London, pp 421–456Google Scholar
  27. Smolyaninov VA (1966) Some special features of organization of the cerebellar cortex. In: Gelfand IM, Gurfinkel VS, Fomin SV, Tsetlin ML (eds) Models of the structural-functional organization of certain biological systems. MIT Press, Cambridge, pp 251–325 (Translated from Russian 1971)Google Scholar
  28. Szentàgothai J (1968) Structuro-functional considerations of the cerebellar neuron network. Proc IEEE 56:960–968CrossRefGoogle Scholar
  29. Wiener N (1948) Cybernetics, or control and communication in the animal and the machine. MIT Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • A. J. Pellionisz
    • 1
  1. 1.Department of Physiology and BiophysicsNew York UniversityNew YorkUSA

Personalised recommendations