Advertisement

Brain Theory pp 211-228 | Cite as

Associative Networks and Cell Assemblies

Abstract

Since the time of McCulloch and Pitts’ Theory (1943) there have been many attempts to model the flow of activity in neural networks. It is possible to simulate neural networks (of rather small size) on a computer, relying on quite reasonable — more or less simplified — assumptions on the dynamic behavior of single neurons. One problem is the arbitrariness of the design of the network (i.e. the connectivity matrix). Here many investigations have studied random connectivity (e.g. Anninos et al. 1970, Griffith 1971, Amari 1974, Dammasch and Wagner 1984) or connectivity that itself changes subject to certain rules (for an overview see Palm 1982).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari S-I (1974) A method of statistical neurodynamics. Kybernetik 14:201PubMedGoogle Scholar
  2. Anderson IA (1972) A simple neural network generating an interactive memory. Math Biosci 14:197CrossRefGoogle Scholar
  3. Anninos PA, Beek B, Csermely TJ, Harth EM, Pertile G (1970) Dynamics of neural structures. J Theor Biol 26:121PubMedCrossRefGoogle Scholar
  4. Apers (1983) Query processing and data allocation in distributed database systems. Math Centrum, AmsterdamGoogle Scholar
  5. Braitenberg V (1978) Cell Assemblies in the Cerebral Cortex. In: Heim R, Palm G (eds) Theoretical approaches to complex systems. Springer, Berlin Heidelberg New York, p 171Google Scholar
  6. Caianiello ER (1961) Outline of a theory of though processes and thinking machines. J Theor Biol 1:204PubMedCrossRefGoogle Scholar
  7. Dammasch IE, Wagner GP (1984) On the properties of randomly connected McGulloch-Pitts Networks: Differences between input-constant and input-variant Networks. Cybern Syst 15:91CrossRefGoogle Scholar
  8. Fukushima K (1975) Cognitron: a self-organizing multilayered neural network. Biol Cybern 20:121PubMedCrossRefGoogle Scholar
  9. Greilich H (1984) Quantitative Analyse der cortico-corticalen Fernverbindungen bei der Maus. Dissertation, TübingenGoogle Scholar
  10. Greilich H, Dortenmann M (1985) A quantitative HRP-study of cortico-cortical connections in the mouse. Anat Aspects (in preparation)Google Scholar
  11. Greilich H, Palm G (1985) A quantitative HRP-study of cortico-cortical connections in the mouse. Functional implications (in preparation)Google Scholar
  12. Griffith JS (1971) Mathematical Neurobiology. Academic, New YorkGoogle Scholar
  13. Hebb DO (1949) The organization of behaviour. Wiley, New YorkGoogle Scholar
  14. Kohonen T (1977) Associative memory. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Kohonen T (1980) Content addressable memories. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. Lansner A (1983) Pattern processing in an adaptive associative network (preprint)Google Scholar
  17. Malsburg C von der (1973) Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14:85PubMedCrossRefGoogle Scholar
  18. Marr D (1969) A theory of cerebellar cortex. J Physiol (London) 202:437Google Scholar
  19. Marr D (1970) A theory of cerebral neocortex. Proc Roy Soc Lond Ser B Vol 171, p 161CrossRefGoogle Scholar
  20. Marr D (1971) Simple memory. Philos Trans R Soc London Ser B 262:23CrossRefGoogle Scholar
  21. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115CrossRefGoogle Scholar
  22. Nass MM, Cooper LN (1975) A theory for the development of feature detecting cells in visual cortex. Biol Cybern 19:1PubMedCrossRefGoogle Scholar
  23. Palm G (1980) On associative memory. Biol Cybern 36:19PubMedCrossRefGoogle Scholar
  24. Palm G (1981) Towards a theory of cell assemblies. Biol Cybern 39:181PubMedCrossRefGoogle Scholar
  25. Palm G (1982a) Rules for synaptic changes and their relevance for the storage of information in the brain. In: Trappl R (ed) Cybernetics and Systems Reserach. Elsevier North-Holland, Amsterdam New YorkGoogle Scholar
  26. Palm G (1982b) Neural assemblies. An alternative approach to artificial intelligence. Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. Palm G (1984) Local synaptic modification can lead to organized connectivity patterns in associative memory. In: Frehland E (ed) Synergetics: From microscopic to macroscopic order. Springer, Berlin Heidelberg New YorkGoogle Scholar
  28. Steinbuch K (1961) Die Lernmatrix. Kybernetik 1:36CrossRefGoogle Scholar
  29. Uttley AM (1956) Conditional probability machines and conditioned reflexes. In: Shannon CE, McCarthy I (eds) Automata studies. Princeton Univ Press, PrincetonGoogle Scholar
  30. Wilson KV (1980) From associations to structure. Elsevier North-Holland, Amsterdam New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • G. Palm
    • 1
  1. 1.Max-Planck-Institut für Biologische KybernetikTübingenGermany

Personalised recommendations