Skip to main content

Associative Processing in Brain Theory and Artificial Intelligence

  • Conference paper
Brain Theory
  • 773 Accesses

Abstract

The goal of brain theory is to uncover the mechanisms behind biological information processing and intelligence. One hopes eventually to understand the whole range of behavior in animals and in man in terms of the structure and operation of the neuronal circuitry of their brains. To actually create some kind of intelligent device which is the aim artificial intelligence (AI) is clearly a different goal. Yet, it is obvious that these two fields are closely related.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JA (1983) Cognitive and psychological computation with neural models. IEEE Trans Syst Man Cybern SMC-13:799–815

    Google Scholar 

  • Anderson JA, Mozer MC (1981) Categorization and selective neurons. In: Hinton GE, Anderson JA (eds) Parallel models of associative memory. Lawrence Erlbaum Assoc, pp 213–236

    Google Scholar 

  • Anderson JA, Silverstein JW, Ritz SA, Jones RS (1977) Distinctive features, categorical perception, and probability learning: Some applications of a neural model. Psychol Rev 84:413–451 (1977)

    Google Scholar 

  • Anderson JR (1983) A spreading activation theory of memory. J Verbal Learning Verbal Behav 22:261–295

    Article  Google Scholar 

  • Braitenberg V (1978) Cell assemblies in the cerebral cortex. In: Heim R, Palm G (eds) Theoretical approaches to complex systems. Springer, Berlin Heidelberg New York, pp 171–188

    Google Scholar 

  • Brown CM (1984) Computer vision and natural constraints. Science 224:1299–1305

    Article  PubMed  CAS  Google Scholar 

  • Copper R, McCallum WC, Newton P, Papakostopoulus D, Pocock PV, Warren WJ (1977) Cortical potentials associated with the detection of visual events. Science 196:74–77

    Article  Google Scholar 

  • Dalenoort GJ (1982) In search of the conditions for the genesis of cell assemblies: A study of self-organization. J Social Biol Struct 5:161–187

    Article  Google Scholar 

  • Davis LS, Rosenfeld A (1981) Cooperating processes for low-level vision. Artif Intell 17:245–263

    Article  Google Scholar 

  • Feldman JA, Ballard DH (1982) Connectionist models and their properties. Cognitive sci 6:205–254

    Article  Google Scholar 

  • Fukushima K (1984) A hierarchical neural network model for associative memory. Biol Cybern 50(2):105–113

    Article  PubMed  CAS  Google Scholar 

  • Geman S (1981) Notes on a self-organizing machine. In: Hinton GE, Anderson JA (eds) Parallel models of associative memory. Lawrence Erlbaum Assoc, pp 237–263

    Google Scholar 

  • Gigley HM (1982) A computational neurolinguistic approach to processing models of sentence comprehension. COINS Tech Rep 82-9, Univ Massachusetts, Amherst

    Google Scholar 

  • Glass JD, Hall RW (1981) Pattern processing and slow-wave activity in visual cortex of cat. Electroenceph Clin Neurophysiol 52:116–126

    Article  PubMed  CAS  Google Scholar 

  • Grastyan E, John ER, Bartlett F (1978) Evoked response correlate of symbol and significance. Science 201:168–171

    Article  PubMed  CAS  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Hinton GE, Sejnowski TJ (1983) Optimal perceptual inference. Proc IEEE Conf Comput Vision Pattern Recognition (CVPR), Washington DC

    Google Scholar 

  • Hubel DH, Wiesel TN (1965) Binocular interactions in striate cortex of kittens reared with artificial squint. J Neurophysiol 28:1041–1059

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1979) Brain mechanisms of vision. Sci Am 24(3):150–162

    Article  Google Scholar 

  • Kandel ER (1979) Cellular insights into behaviour and learning. Harvey Lect 73:19–92

    PubMed  CAS  Google Scholar 

  • Kobsa A (1984) Knowledge representation: A survey of its mechanisms, a sketch of its semantics. Cybern Syst 15:41–89

    Article  Google Scholar 

  • Kohonen T (1972) Correlation matrix memories. IEEE Trans Comput C-21:353–359

    Article  Google Scholar 

  • Kohonen T (1977) Associative memory — a system theoretic approach. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kohonen T (1984) Self-organization and associative memory. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kohonen T, Lehtiö P, Oja E, Kortekangas A, Mäkisara K (1977) Demonstration of pattern processing properties of optimal associative mappings. Proc Int Conf Cybern, Soc Washington CD, pp 581–585

    Google Scholar 

  • Kupfermann I (1981) Learning. In: Kandel ER, Schwartz JH (eds) Principles of neural science. Elsevier/North-Holland, Amsterdam New York

    Google Scholar 

  • Lansner A (1982) Information processing in a network of model neurons. A computer simulation study. Rep TRITA-NA-8211, Dep Numerical Anal Comput Sci. R Inst Technol, Stockholm

    Google Scholar 

  • Lansner A, Ekeberg Ö (1984) Reliability and speed of recall in an associative network. Rep TRITA-NA-8408, Dep Numerical Anal Comput Sci. R Inst Technol, Stockholm

    Google Scholar 

  • Levy WB, Steward O (1979) Synapses as associative memory elements in the hippocampal formation. Brain Res 175:233–245

    Article  PubMed  CAS  Google Scholar 

  • Longuet-Higgins HC, Willshaw DJ, Buneman OP (1970) Theories of associative recall. Q Rev Biophys 3(2):223–244

    Article  PubMed  CAS  Google Scholar 

  • Malsburg C von der (1973) Self-organization of orientation selective cells in the striate cortex. Kybernetik 14:85–100

    Article  PubMed  Google Scholar 

  • Marr DO (1970) A theory for cerebral cortex. Proc R Soc London Ser B176:161–234

    Google Scholar 

  • McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  Google Scholar 

  • Palm G (1980) On associative memory. Biol Cybern 36:19–31

    Article  PubMed  CAS  Google Scholar 

  • Palm G (1981a) On the storage capacity of an associative memory with randomly distributed storage elements. Biol Cybern 39:125–127

    Article  Google Scholar 

  • Palm G (1981b) Towards a theory of cell assemblies. Biol Cybern 39:181–194

    Article  PubMed  CAS  Google Scholar 

  • Palm G (1982) Neural assemblies. An alternative approach to artificial intelligence. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Palm G, Bonhoeffer T (1985) Parallel processing for associative and neuronal networks. Biol Cybern 51:201–204

    Article  Google Scholar 

  • Perez R, Glass L, Schlaer R (1975) Development of specificity in the cat visual cortex. J Math Biol 1:275–288

    Google Scholar 

  • Rochester N, Holland JH, Haibt LH, Duda WL (1956) Tests on a cell assembly theory of the action of the brain, using a large digital computer. IRE Trans Inf Theory IT-2:80–93

    Article  Google Scholar 

  • Rosenblatt F (1961) Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Spartan

    Google Scholar 

  • Shiozaki A (1984) Recollection ability of three-dimensional correlation matrix associative memory. Biol Cybern 50(5):337–342

    Article  Google Scholar 

  • Small SL, Cottrell GW, Shastri L (1982) Toward connectionist parsing. Proc Net Conf AAAI, Pittsburgh

    Google Scholar 

  • Uttley AM (1958) Conditioned probability computing in a nervous system. In: Mechanization of thought processes. HMSO, London

    Google Scholar 

  • Wigström H (1975) Associative recall and formation of stable modes of activity in neuronal network models. J Neurosci Res 1:287–313

    Article  PubMed  Google Scholar 

  • Willwacher G (1976) Fähigkeiten eines assoziativen Speichersystems im Vergleich zur Gehirnfunktion. Biol Cybern 24:181–198

    Article  PubMed  CAS  Google Scholar 

  • Willwacher G (1982) Storage of a temporal sequence of patterns in a network. Biol Cybern 43:115–126

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lansner, A. (1986). Associative Processing in Brain Theory and Artificial Intelligence. In: Palm, G., Aertsen, A. (eds) Brain Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70911-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70911-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70913-5

  • Online ISBN: 978-3-642-70911-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics