Skip to main content

Trion Model of Cortical Organization: Toward a Theory of Information Processing and Memory

  • Conference paper
Brain Theory

Abstract

In the spirit of Mountcastle’s [1] organizational principle for neocortical function, and strongly motivated by Fisher’s [2] model of physical spin systems, we have introduced [3] a new cooperative mathematical model of the cortical column. Our model incorporates an idealized substructure, the trion, which represents a localized group of neurons. The trion model allows for a completely new framework for information processing and associative memory storage and recall: Small networks of trions with highly symmetric interactions are found to yield hundreds to thousands of quasi-stable, periodic firing patterns, MP’s, which can evolve from one to another (see Fig. 1). Experience or learning would then modify the interactions (away from the symmetric values) and select out the desired MP’s (as in the selection principle of Edelman [4]). Remarkably, we have found that relatively small modifications in trion interaction strengths (away from the symmetric values) via a Hebb-type algorithm [5] will enhance and select out any desired MP. Conceptually this suggests a radically different approach from those information processing models which start at the opposite extreme of a randomly connected neural network with no periodic firing patterns, and then (via Hebb-type modifications [5] in the synaptic interactions) reinforce specific firing patterns. More recently [6], in studying the associative recall properties of the networks we find that, on the average, any of the initial firing configurations rapidly (in 2 to 4 time steps) projects onto an MP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mountcastle VB (1978) In: Edelman GM, Mountcastle VB (eds) The mindful brain. MIT Press, Cambridge, pp 1-50

    Google Scholar 

  2. Fisher ME, Selke W (1980) Phys. Rev. Lett. 44:1502–1505;

    Article  Google Scholar 

  3. Fisher ME, Selke W (1981) Philos. Trans. R. Soc. (London) 302:1–44;

    Article  Google Scholar 

  4. Fisher ME, Selke W (1981) J. Appl. Phys. 52:2014–2018;

    Article  Google Scholar 

  5. Huse DA, Fisher ME, Yeomans JM (1981) Phys. Rev. B 23:180–185

    Google Scholar 

  6. Shaw GL; Silverman DJ, Pearson JC (1985) Proc. Natl. Acad. Sci. USA 82:2364–2368

    Article  PubMed  CAS  Google Scholar 

  7. Edelman GM (1978) In: Edelman GM, Mountcastle VB (eds) The mindful brain. MIT Press, Cambridge, pp 51–100;

    Google Scholar 

  8. Edelman GM (1981) In: Schmidt FO (ed) Organization of the cerebral cortex. MIT Press, Cambridge, pp 535–563

    Google Scholar 

  9. Hebb DO (1949) The organization of behaviour. Wiley, New York

    Google Scholar 

  10. Silverman DJ, Shaw GL, Pearson JC (1986) Biol Cybern 53 (in press)

    Google Scholar 

  11. Wolfram S (1983) Rev. Mod. Phys. 55:601–644;

    Article  Google Scholar 

  12. Wolfram S (1984) Nature. (London) 311:419–424

    Article  Google Scholar 

  13. Proc Conf Chem Based Comput Design (1984) Yates F (ed) UCLA

    Google Scholar 

  14. See e.g., the references in the following reviews of neural network models: Harmon LD, Lewis ER (1966) Physiol. Rev. 46:513–519;

    PubMed  Google Scholar 

  15. MacGregor RJ, Lewis ER (1977) Neural modeling. Plenum Press, New York;

    Google Scholar 

  16. Amari S, Arbib MA (eds) (1982) Competition and cooperation in neural nets. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Pearson JC et al (1983) Abstr 238.9 for 13th Annu Meet, Soc Neurosci;

    Google Scholar 

  18. Pearson JC (1985) Ph D thesis (unpublished)

    Google Scholar 

  19. Shaw GL, Rinaldi PC, Pearson JC (1983) Exp Neurol 79:293–298

    Article  PubMed  CAS  Google Scholar 

  20. Morrell F, Hoeppner TJ, Toledo-Morrell L de (1983) Exp Neurol 80:111–146;

    Article  PubMed  Google Scholar 

  21. Morrell F (1967) In: Quarton GC, Melnechuk T, Schmitt FO (eds) The neurosciences: A study program. Rockefeller Univ Press, New York, pp 452–469

    Google Scholar 

  22. Little WA (1974) Math Biosci 19:101–120;

    Article  Google Scholar 

  23. Shaw GL, Vasudevan R (1974) Math Biosci 21:207–218;

    Article  Google Scholar 

  24. Little WA, Shaw GL (1975) Behav Biol 14:115–133;

    Article  PubMed  Google Scholar 

  25. Little WA, Shaw GL (1978) Math Biosci 39:281–290

    Article  Google Scholar 

  26. Shaw GL, Roney KJ (1979) Phys Lett 74A:146–150;

    Google Scholar 

  27. Roney KJ, Shaw GL (1980) Math Biosci 51:25–41;

    Article  Google Scholar 

  28. Shaw GL (1978) Brain Res Bull 3:107–113

    Article  PubMed  CAS  Google Scholar 

  29. Shaw GL, Harth E, Scheibel (1982) Exp Neurol 77:324–358;

    Article  PubMed  Google Scholar 

  30. Shaw GL, Pearson JC (1983) Proc “Orbis Scientiae”, Perlmutter A (ed) (in press)

    Google Scholar 

  31. Andersen P, Andersson SA (196) Physiological basis of the alpha rhythm. Appleton-Century-Crofts, New York

    Google Scholar 

  32. Hubel DH, Wiesel TN (1963) J Neurophysiol 26:1003–1017

    PubMed  Google Scholar 

  33. Merzenich MM et al (1984) J Comp Neurol 224:591–605

    Article  PubMed  CAS  Google Scholar 

  34. Verzeano M, Negishi K (1960) J Gen Physiol 43:177–195;

    Article  PubMed  Google Scholar 

  35. Verzeano M (1980) In: Thompson RF, Hicks LH, Shvyskov VB (eds) Neural mechanisms of goaldirected behavior and learning. Academic, London New York, pp 353–373

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shaw, G.L., Silverman, D.J., Pearson, J.C. (1986). Trion Model of Cortical Organization: Toward a Theory of Information Processing and Memory. In: Palm, G., Aertsen, A. (eds) Brain Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70911-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70911-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70913-5

  • Online ISBN: 978-3-642-70911-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics