Skip to main content

The Interface Between Chemistry and Biology — Laws Determining Regularities in Early Evolution

  • Conference paper
Supramolecular Structure and Function

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Biological evolution is commonly visualized as a global process leading from simple structures to complex entities, a process which is slow in comparison to the turnover of generations. No doubt, the “machinery for survival” became more and more involved and sophisticated during progress of evolution. It is really no question whether a bacterium is less complex than a leech, whether a worm is less complex than a mammal or whether an insect society is less complex than human society. But when it comes to cast the notion of complexity into precise mathematical terms we have to face enormous difficulties which are not yet solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beyer WA, Stein ML, Ulam M (1971) The notation of complexity. Los Alamos Tech LA4822 Biebricher CK (1983) Darwinian selection of self-replication RNA molecules. In: Hechet MK,Wallace B, Prance GT (eds) Evolutionary biology, vol 16. Plenum Press, New York, pp 1–52

    Google Scholar 

  • Biebricher CK (1983) Darwinian selection of self-replication RNA molecules. In: Hechet MK, Wallace B, Prance GT (eds) Evolutionary biology, vol 16. Plenum Press, New York, pp 1–52

    Google Scholar 

  • Biebricher CK, Eigen M, Luce R (1981) Product analysis of RNA generated de novo by Qß replicase. J Mol Biol 148:396–390 and kinetic analysis of template-instructed and de novo RNA synthesis by Qß replicase. J Mol Biol 148: 391–410

    Article  Google Scholar 

  • Biebricher CK, Diekmann S, Luce R (1982) Structural analysis of self-replicating RNA synthesized by Qß replicase. J Mol Biol 154: 629–648

    Article  Google Scholar 

  • Biebricher CK, Eigen M, Gardiner WC Jr (1983) Kinetics of RNA replication. Biochemistry 22: 2544–2559

    Article  Google Scholar 

  • Cairns-Smith AG (1975) A case for an alien ancestry. Proc R Soc London Ser B 189:249–274 Cedergren RJ, Sankoff D, La Rue B, Grosjean H (1981) The evolving t-RNA molecule. CRC Crit RevBiochem 11: 35–104

    Google Scholar 

  • Cedergren RJ, Sankoff D, La Rue B, Grosjean H (1981) The evolving t-RNA molecule. CRC Crit RevBiochem 11:35–104

    Article  Google Scholar 

  • Chaitin GJ (1966) On the length of programms for computing finite binary sequences. J Assoc Comput Mach 13: 547–56

    MathSciNet  MATH  Google Scholar 

  • Chaitin GJ (1969) On the simplicity and speed of programs for computing infinite sets of natural numbers. J Assoc Comput Mach 16: 407–422

    MathSciNet  MATH  Google Scholar 

  • Chaitin GJ (1975) Randomness and mathematical proof. Sci Am 232 (5): 47–52

    Article  Google Scholar 

  • Crick F (1981) Life itself. Its origin and nature. Simon and Schuster, New York

    Google Scholar 

  • Dobzhanski T, Ayala FJ, Stebbins GL, Valentine JW (1977) In: Freeman WH (ed) Evolution. San Francisco

    Google Scholar 

  • Ebeling W, Jiménez-Montano MA (1980) On grammars, complexity and information measures of biological macromolecules. Math Biosci 52: 53–71

    Article  MATH  Google Scholar 

  • Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58: 465–526

    Article  ADS  Google Scholar 

  • Eigen M, Schuster P (1979) The hypercycle - a principle of biological self-organization. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eigen M, Schuster P (1982) Stages of emerging life - five principles of early organization. J Mol Evol 19: 47–61

    Article  Google Scholar 

  • Eigen M, Winkler-Oswatitsch R (1981) Transfer-RNA: the early adaptor. Naturwissenschaften 68:217–228 and transfer-RNA, an early gene. Naturwissenschaften 68: 282–292

    Article  ADS  Google Scholar 

  • Eigen M, Gardiner W, Schuster P, Winkler-Oswatitsch R (1981) The origin of genetic information. Sci Am 244 (4): 88–118

    Article  Google Scholar 

  • Eigen M, McCaskill J, Schuster P (1985) in preparation

    Google Scholar 

  • Fox SW, NakashimaT,Przybylski A, Syren RM (1982) The updated experimental protenoid model. Int J Quant Chem Quant Biol Symp 8: 441–454

    Google Scholar 

  • Haken H (1977) Synergetics - an introduction. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Hess B (1983) Non-equilibrium dynamics of biochemical processes. Hoppe-Seyler’s Z Physiol Chem 364: 1–20

    Article  Google Scholar 

  • Hoffman GW, Pörschke D (1973) Cooperative nonenzymic base recognition. Thermodynamics of the helix-coil transition of a monomer-polymer double helix. Biopolymers 12:1611–1623

    Article  Google Scholar 

  • Inoue T, Orgel LE (1983) A nonenzymatic RNA polymerase model.Science 219:859—862

    Article  Google Scholar 

  • Jacob F ( 1982 ) The possible and the actual. Pantheon Books, New York

    Google Scholar 

  • Kolmogorov A (1965) Three approaches for defining the concept of information quantity. Probl Inf Transm (USSR) 1: 3–11

    MathSciNet  MATH  Google Scholar 

  • Kolmogorov A (1968) Logical basis for information theory and probability theory. IEEE Transm Inf Theory IT-14:662–664

    Google Scholar 

  • Kornberg A (1980) DNA replication, 2nd edn. Freeman, San Francisco

    Google Scholar 

  • Lodish HF, Rothman JE (1979) The assembly of cell membranes. Sci Am 240(l):38–53

    Article  Google Scholar 

  • Lohrmann R, Orgel LE (1973) Prebiotic activation processes. Nature (London) 244:418–420

    Article  ADS  Google Scholar 

  • Lohrmann R, Bridson PK, Orgel LE (1980) Efficient metalion catalyzed template-directed oligo­nucleotide synthesis. Science 208:1464–1465

    Article  ADS  Google Scholar 

  • Maynard-Smith J (1983) Models of evolution. Proc R Soc London Ser B 219: 315–325

    Article  ADS  MATH  Google Scholar 

  • Miele EA, Mills DR, Kramer FR (1983) Autocatalytic replication of a recombinant RNA. J Mol Biol 171: 281–295

    Article  Google Scholar 

  • Miller SL, Orgel LE (1974) The origins of life on earth. Engelwood Cliffs, N J, Prentice Hall

    Google Scholar 

  • Nicolis G, Prigogine I ( 1977 ) Self-organization in nonequilibrium systems. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Pörschke D, Hoffman GW, Senear A (1973) Double helix complex formed from a polynucleotide and a complementary monomer. Nature (London) 242: 45–46

    Google Scholar 

  • Schell J, Montagu M van (1980) Gene transfer as an infective process. In: Smith H, Skehell JJ, Turner JM (eds) The molecular basis of microbial pathogenicity. Verlag Chemie, Weinheim, pp 225–246

    Google Scholar 

  • Schuster P (1981) Prebiotic evolution. In: Gutfreund H (ed) Biochemical evolution. Cambridge Univ Press, Cambridge, pp 15–87

    Google Scholar 

  • Schuster P, Sigmund K (1984) Random selection and the neutral theory - sources of stochasticity in replication. In: Schuster P (ed) Stochastic phenomena and chaotic behaviour in complex systems. Springer, Berlin Heidelberg New York, pp 186–205

    Google Scholar 

  • Schwartz AW (1981) Chemical evolution — the genesis of the first organic compounds. In: Duursma EK, Dawson R (eds) Marine organic chemistry. Elsevier, Amsterdam, pp 7–30

    Google Scholar 

  • Sheperd JCW (1981) Periodic correlations in DNA sequences and evidence suggesting their evolutionary origin in a comma less genetic code. J Mol Evol 17: 84 — 102

    Google Scholar 

  • Spiegelman S (1971) An approach to the experimental analysis of precellular evolution. Q Rev Biophys 4: 213–253

    Article  Google Scholar 

  • Swetina J, Schuster P (1982) Self-replication with errors. A model for polynucleotide replication. Biophys Chem 16: 329–345

    Article  Google Scholar 

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. A structure for desoxyribose nucleic acid. Nature (London) 171: 737 — 738

    Article  ADS  Google Scholar 

  • Weiss A (1981) Replication and evolution in inorganic systems. Angew Chem Int Ed Engl 20:850— 861

    Article  Google Scholar 

  • Weissmann C, Billeter MA, Goodman HM, Hindley J, Weber H (1973) Structure and function of phage RNA. Annu Rev Biochem 42: 303–328

    Article  Google Scholar 

  • Winfree AT (1974) Rotating chemical reactions. Sci Am 140 (6): 82–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schuster, P. (1986). The Interface Between Chemistry and Biology — Laws Determining Regularities in Early Evolution. In: Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70905-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70905-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70907-4

  • Online ISBN: 978-3-642-70905-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics