Major Element Geochemistry of the Host Rocks in Some Sediment-Hosted Copper Deposits

  • B. Moine
  • L. Guilloux
  • D. Audeoud
Conference paper
Part of the Special Publication No. 4 of the Society for Geology Applied to Mineral Deposits book series (MINERAL DEPOS., volume 4)


The chemical compositions of fine-grained sedimentary rocks provide important genetic indications when their mineralogical significance is brought out. The chemical approach is essential when the primary features have been obliterated by metamorphic crystallization. Recent progress in the geochemistry of shales and marls from evaporite-bearing series is of special interest with regard to sediment-hosted copper deposits.

Two major chemical characteristics are obvious in the environment of the Ore-Shale deposits in the Zambian Copperbelt based on comparison of 378 analyses on systematically chosen samples from drill holes and cross-sections in Konkola, Chingola, Chambishi, Mindola, Rokana, and Luanshya (metamorphism from greenschists to lower amphibolite facies) with shales and marls from common platform series. Firstly, the relatively high Mg (and Li) contents are characteristic of magnesian clay minerals, in the early members of evaporitic sequences. This is an ubiquitous feature whereas anhydrite is only of local occurrence. Secondly, primary (premetamorphic) fine-grained rocks with very high K- feldspar and comparatively low quartz contents (around 63% feldspar, 10% quartz and 27% chlorite-rich clays) are inferred from extremely high K2O concentrations (often ≥10%) and K/Al ratios in the Ore-Shale Formation. These compositions cannot be obtained by sedimentary processes only and a large part of the feldspar is probably of diagenetic/hydrothermal origin.

In Shaba (Kamoto, Kambove) the Cu and Co concentrations are carbonate- hosted. However, very uncommon chemical compositions are exhibited by the Mg-chlorite-quartz-dolomite rocks of the underlying RAT formation (32 analyses): high Mg, Li and low alkali contents. They could partly derive from felsic-volcanic glass altered by reaction with Ca- and Mg-rich and alkali-poor brines. Such brines have been observed in fluid inclusions related to U-mineralization which occurs at the top of the formation.

In contrast, the German Kupferschiefer (Mansfeld district, 22 analyses) does not show major element compositions different from those of common black shales.


Host Rock Contrib Miner Petrol Major Element Geochemistry Typical Chemical Composition Evaporitic Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annels AE (1974) Some aspects of the stratiform ore deposits of the Zambian copperbelt and their genetic significance. In: Bartholomé P (ed) Gisements stratiformes et provinces cuprifères. Soc Geol Belg, Liège, pp 235–254Google Scholar
  2. Annels AE, Vaughan DJ, Craig JR (1983) Conditions of ore mineral formation in certain Zambian Copperbelt deposits with special reference to the role of cobalt. Miner Depos 18: 71–88CrossRefGoogle Scholar
  3. Audeoud D (1982) Les minéralisations uranifères et leur environnement à Kamoto, Kambove et Shinkolobwe (Shaba, Zaïre). Pétrographie, géochimie et inclusions fluides. These 3eme Cycle, Lyon, 211 ppGoogle Scholar
  4. Bartholomé P (1974) On the diagenetic formation of ores in sedimentary beds with special reference to Kamoto, Shaba, Zaïre. In: Bartholomé P (ed) Gisements stratiformes et provinces cuprifères. Liège, Soc Géol Belg, Liège, pp 203–213Google Scholar
  5. Binda PL, Mulgrew JR (1974) Stratigraphy of copper occurrences in the Zambian Copperbelt. In: Bartholomé P (ed) Gisements stratiformes et provinces cuprifères. Soc Géol Belg, Liège, pp 215 - 233Google Scholar
  6. Bowie SHU, Dawson J, Gallagher M J, Ostle D (1966) Potassium-rich sediments in the Cambrian of Northwest Scotland. Trans Inst Ming Metal GB 75, 714: 125–145Google Scholar
  7. Bowie SHU, Dawson J, Gallagher M J, Ostle D (1967) Potassium-rich sediments in the Cambrian of Northwest Scotland. Report of discussion at Nov. 66, general meeting, contributed remarks and author’s reply. Trans Inst Ming Metal GB 76, 723: 60–69Google Scholar
  8. Cailteux J (1977) Particularités stratigraphiques et pétrographiques du faisceau inférieur du Groupe des Mines au centre de l’arc cuprifère shabien. Ann Soc Geol Belg 100: 55–71Google Scholar
  9. Cailteux J (1983) Le “Roan” shabien dans la région de Kambove (Shaba, Zaïre). Etude sédimentologique et métallogénique. These, Univ LiègeGoogle Scholar
  10. Croxford NJW (1964) Origin and significance of volcanic potash-rich rocks from Mount Isa. Trans Inst Ming Metal GB 74: 33–43Google Scholar
  11. Darnley AG (1960) Petrology of some Rhodesian Copperbelt orebodies and associated rocks. Trans Inst Ming Metal GB 69:137–173, 371–398, 540–569Google Scholar
  12. Drysdall AR, Johnson RL, Moore TA, Thieme JG (1972) Outline of the geology of Zambia. Geol Mijnbouw 51: 265–276Google Scholar
  13. Fleischer VD, Garlick WC, Haidane R (1976) Geology of the Zambian Copperbelt. Handbook of stratabound and stratiform ore deposits. In: Wolf KH (ed) Elsevier, New York, 6: 223–352Google Scholar
  14. Francois A (1974) Stratigraphie, tectonique et minéralisations dans l’Arc cuprifère du Shaba (République du Zaïre). In: Bartholomé P (ed) Gisements stratiformes et provinces cuprifères. Soc Geol Belg, Liège, pp 79–101Google Scholar
  15. Garlick WG, Fleischer VD (1972) Sedimentary environment of Zambian copper deposition. Zambia issue. Geol Mijnbouw, 51: 277–298Google Scholar
  16. Guilloux L (1982) Etude chimique des séries porteuses de quelques grands gisements de type Kupferschiefer. Conséquences métallogéniques. Thèse d’Etat Lyon. Sciences de la Terre, Nancy, Mém 43Google Scholar
  17. Guilloux L, Pellisonnier H (1974) Les gisements de schistes, marnes et grès cuprifères. In: Gisements stratiformes et provinces cuprifères. Soc Geol Belg, Liège, pp 35–53Google Scholar
  18. Hewitt DA (1973) Stability of the assemblage muscovite-calcite-quartz. Am Miner 58: 785–791Google Scholar
  19. Hoschek G (1973) Die Reaktion Phlogopit + Calcit + Quartz = Tremolit + Kalifeldspat + H2O + CO2. Contrib Miner Petrol 39: 231–237CrossRefGoogle Scholar
  20. Hoschek G (1980) Phase relations of a simplified marly rock system with application to the Western Hohe Tauern (Austria). Contrib Miner Petrol 73: 53–68CrossRefGoogle Scholar
  21. Jacobs GK, Kerrick DM (1981) Devolatilization equilibria in H2O-CO2 and H2O-CO2-NaCl fluids: an experimental and thermodynamic evaluation at elevated pressures and temperatures. Am Miner 66: 1135–1153Google Scholar
  22. Jarousse J (1978) Contribution au problème de l’identification d’anciennes séries évaporitiques dans les ensembles métamorphiques. Approche principalement géochimique. These 3eme Cycle, Univ Claude Bernard, Lyon-I, 232 ppGoogle Scholar
  23. Jarousse J, Moine B, Sauvan P (1978) Etude chimique de séries évaporitiques en vue de leur identification dans les ensembles métamorphiques. CR Acad Sci Ser D 286: 1057–106Google Scholar
  24. Katekesha WM (1975) Conditions de formation du gisement cuprocobaltifère de Kamoto Principal (Shaba, Zaïre). Mem Doct, Fac Sei Univ Liège, 237 ppGoogle Scholar
  25. Kerrick DM (1974) Review of metamorphic mixed-volatile (H2O-CO2) equilibria. Am Miner 59: 729–762Google Scholar
  26. Kulke H (1976) Die salinare Trias des Atlassystems (Nordwest Afrika). Faziesverteilung, Tektonik, Morphologie, Petrographie, Mineralogie und Geochemie, 213 S. Habil Sehr Fak Geowiss, Univ Bochum (unpublished)Google Scholar
  27. Kulke H (1978) Tektonik und Petrographie einer Salinarformation am Beispiel der Trias des Atlas-systems (Nordwest Afrika). Geotekt Forsch, 55 I-II:1–58Google Scholar
  28. La Roche H de (1965) Sur l’existence de plusieurs faciès géochimiques dans les schistes paléozoïques des Pyrénées Luchonnaises. Geol Rundsch Dtsch 55: 274–301CrossRefGoogle Scholar
  29. La Roche H de (1968) Comportement géochimique différentiel de Na, K, et Al dans les formations métamorphiques et plutoniques. CR Acad Sci Ser D 267: 39–42Google Scholar
  30. La Roche H de (1974) Geochemical characters of the metamorphic domains: survival and testimony of their premetamorphic history. Sci Terre, T XIX, 2: 101–117Google Scholar
  31. Lefebvre J J, Cailteux J (1975) Volcanisme et minéralisations diagénétiques dans le gisement de l’Etoile, Shaba, Zaïre. Ann Soc Geol Belg, Liège, 98 (1): 177–195Google Scholar
  32. Malan SP (1964) Stromatolites and other algal structures at Mufulira, Northern Rhodesia. Econ Geol 59: 397–415CrossRefGoogle Scholar
  33. Massonne H J (1981) Phengite: eine experimentelle Untersuchung ihres Druck-Temperatur-Verhaltens im System K2O - MgO - A12O3 - SiO22 - H2O. Dissertation, Ruhr-Univ BochumGoogle Scholar
  34. Massonne HJ, Schreyer W (1983a) A new experimental phengite barometer and its application to a variscan subduction zone at the southern margin of the rhenohercynicum. 2nd E.U.G. meeting, Strasbourg, 1983. In Terra Cognita, 3: 187Google Scholar
  35. Massonne HJ, Schreyer W (1983b) Stability of the talc-kyanite assemblage revisited. 2nd E.U.G. meeting, Strasbourg, 1983. In Terra Cognita, 3: 187Google Scholar
  36. Mendelsohn F (1961) The geology of the Northern Rhodesian Copperbelt. Mac Donald, London, 523 p.Google Scholar
  37. Moine B (1971) Caractères de sédimentation et de métamorphisme des séries précamrbiennes épizonales à catazonales du centre de Madagascar (région d’Ambatofinandrahana). Sci Terre Fr Mem 31: 293Google Scholar
  38. Moine B, Sauvan P, Jarousse J (1981) Geochemistry of evaporite-bearing series: a tentative guide for the identification of metaevaporites. Contr Mineral Petrol 76: 401–412CrossRefGoogle Scholar
  39. Moine B, Gavoille B, Thiebault J (1982) Géochimie des transformations métasomatiques à l’origine du gisement de talc et chlorite de Trimouns (Luzenac Ariège, France). I. Mobilité des éléments et zonalité. Bull Minéral 105: 62–75Google Scholar
  40. Pirmolin J (1970) Inclusions fluides dans la dolomite du gisement stratiforme de Kamoto (Katanga Occidental). Ann Soc Geol Belg 93 (2): 397–406Google Scholar
  41. Petitijohn FJ (1957) Sedimentary rocks. Harper and Row, New York, 718 pGoogle Scholar
  42. Puhan D, Johannes W (1974) Experimentelle Untersuchung der Reaktion Dolomit + Kalifeldspat + H20 = Phlogopit + Calcite + CO2.Contr Miner Petrol 48: 23–31CrossRefGoogle Scholar
  43. Renfro AR (1975) Genesis of evaporite-associated stratiform metalliferous deposits - a sabkha process. Econ Geol 69: 33–45CrossRefGoogle Scholar
  44. Rentzsch J (1974) The Kupferschiefer in comparison with the deposits of Zambian Copperbelt. In: Gisements stratiformes et provinces cuprifères. Soc Geol Belg, Liège, pp 395–418Google Scholar
  45. Shaw DM (1956) Geochemistry of pelitic rocks. Part III: Major elements and general geochemistry. Geol Soc Am Bull 67: 919–934CrossRefGoogle Scholar
  46. Skippen G (1974) An experimental model for low pressure metamorphism of siliceous dolomitic marble. Am J Sci 274: 487–509CrossRefGoogle Scholar
  47. Slaughter J, Kerrick DM, Wall VJ (1965) Experimental and thermodynamic study of equilibria in the system CaO - MgO - SiO2 - CO2 - H2O. Am J Sci 275: 143–162CrossRefGoogle Scholar
  48. Trauth N (1974) Argiles évaporitiques dans la sédimentation carbonatée continentale et épicontinentale tertiaire. Sci Geol Fr Mem 49: 195 pGoogle Scholar
  49. Vrana S, Barr M WC (1972) Talc-kyanite-quartz schist and other high-pressure assemblages from Zambia. Mineral Mag 38: 837CrossRefGoogle Scholar
  50. Weaver CE, Pollard LD (1973) Developments in sedimentology. The chemistry of clay minerals. Elsevier, Amsterdam, 213 pGoogle Scholar
  51. Wedepohl KH (1971) “Kupferschiefer” as a prototype of syngenetic sedimentary ore deposits. Soc Mining Geol Japan, Spec Issue 3:268–273Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • B. Moine
    • 1
    • 2
  • L. Guilloux
    • 3
  • D. Audeoud
    • 2
    • 4
  1. 1.Laboratoire de Minéralogie, UA67 du CNRSUniversité Paul SabatierToulouseFrance
  2. 2.Laboratoire de Pétrographie, UA805 du CNRSUniversité Claude BernardVilleurbanne CédexFrance
  3. 3.Département Gîtes MinérauxBureau de Recherches Géologiques et MinièresOrléans CédexFrance
  4. 4.Centre de Recherches sur la Géologie de l’UraniumVandoeuvre-Nancy CédexFrance

Personalised recommendations