Skip to main content

Application of Stable Isotopic Studies to Problems of Magmatic Sulfide Ore Genesis With Special Reference to the Duluth Complex, Minnesota

  • Conference paper

Part of the book series: Special Publication No. 4 of the Society for Geology Applied to Mineral Deposits ((MINERAL DEPOS.,volume 4))

Abstract

Analyses of the isotopic composition of S, C, O, and H in mafic igneous rocks may provide valuable information regarding the extent of contamination by continental crust material. Partial melting and devolatilization of country rocks are important processes in the generation of many Cu—Ni deposits associated with mafic igneous rocks. Sulfur isotopes provide a means of evaluating the possibility of extraneous sulfur addition to a melt. Variability and distribution of δ 34S values may also provide data relating to the timing and mechanisms of sulfur production and incorporation into the melt. Oxygen, hydrogen, and carbon isotopes also can be sensitive indicators of isotopic contamination, whether by partial melting, devolatilization, or solid state exchange. Zones of contamination within an igneous sequence are likely to be areas where factors that control sulfide solubility (T, fS2, fO2, melt composition) have been perturbed, and are thus key sites for ore generation.

Stable isotopic studies of two deposits within the Duluth Complex have high-lighted the importance of country rock contamination in the generation of Cu—Ni ores. For the Dunka-Road deposit devolatilization of country rocks has resulted in essentially in situ contamination, and the formation of ore that is variable in both its spatial distribution and δ 34S values. Partial melting and major element contamination are restricted to areas near the margins of xenoliths. At the Babbitt deposit, contamination via both partial melting and devolatilization has been significant. Sulfur isotopic distribution between igneous and metasedimentary rocks suggests that sulfur must have been derived prior to or during magma ascent. Partial melting of country rocks and oxygen isotopic exchange may have occurred either before or after magma emplacement. Chemical diffusion, as well as fluid dynamic properties of mixing are thought to control the isotopic inhomogeneity that characterizes sulfide ore zones in the Duluth Complex.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bonnichsen BG (1972) Southern part of the Duluth Complex. In: Sims PK, Morey GB (eds) Geology of Minnesota: A centennial volume. Minn Geol Sur, St. Paul, pp 361–388

    Google Scholar 

  • Boyd R, Mathiesen CO (1979) The nickel mineralization of the Rana mafic intrusion, Nordland, Norway. Can Miner 17, 2: 287–299

    Google Scholar 

  • Buchanan DL, Nolan J (1979) Solubility of sulfur and sulfide immiscibility in synthetic tholeiitic melts and their relevance to Bushveld-complex rocks. Can Miner 17, 2: 483–495

    Google Scholar 

  • Campbell IH, Naldrett AJ, Barnes SJ (1983) A model for the origin of the platinum-rich sulfide horizons in the Bushveld and Stillwater Complexes. J Petrol 24: 133–165

    Google Scholar 

  • Carter SR, Evensen NM, Hamilton PT, O’Nions RK (1978) Nd- and Sr-isotopic evidence for crustal contamination of continental volcanics. Science 202: 743–747

    Article  Google Scholar 

  • Cooper RW, Morey GB, Weiblen PW (1981) Topographic and aeromagnetic lineaments and their relationship to bedrock geology in glaciated Precambrian terrane, northeastern Minnesota. In: O’Leary O (ed) Proc 3rd Int Conf Basement Tectonics. Basement Tecton Commun Ine 3: 137–148

    Google Scholar 

  • Danckwerth PA, Hess PC, Rutherford MJ (1979) The solubility of sulfur in high-TiO2 mare basalts. Proc Lunar Planet Sci Conf 10: 517–530

    Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53: 189–202

    Article  Google Scholar 

  • DeWaal SA (1977) Carbon dioxide and water from metamorphic reactions as agents for sulfide and spinel precipitation in mafic magmas. Geol Soc S Afr Trans 80: 193–197

    Google Scholar 

  • Fincham CJB, Richardson FD (1954) The behavior of sulfur in silicate and aluminate melts. Proc R Soc London Ser A 223: 40–62

    Article  Google Scholar 

  • Grant NK, Moiling PA (1981) A strontium isotope and trace element profile through the Partridge River troctolite, Duluth Complex, Minnesota. Contrib Mineral Petrol 77: 296–305

    Article  Google Scholar 

  • Gray CM, Cliff RA, Goode ADT (1981) Neodymium-strontium isotope evidence for extreme contamination in a layered basic intrusion. Earth Planet Sci Lett 56: 189–198

    Article  Google Scholar 

  • Groves DI, Barrett RM, McQueen KG (1979) The relative roles of magmatic segregation, volcanic exhalation, and regional metamorphism in the generation of volcanic-associated nickel ores of Western Australia. Can Miner 17, 2: 319–337

    Google Scholar 

  • Haughton D, Roder PL, Skinner BJ (1974) Solubility of sulfur in mafic magmas. Econ Geol 69: 451–567

    Article  Google Scholar 

  • Hollister VF (1980) Origin of graphite in the Duluth Complex. Econ Geol 75: 765–766

    Google Scholar 

  • Huppert HE, Sparks RSJ (1980) The fluid dynamics of a basic magma chamber replenished by hot, dense ultrabasic magma. Contrib Mineral Petrol 75: 279–289

    Article  Google Scholar 

  • Irvine TN (1977) Origin of chromite layer in the Muskox Intrusions and other stratiform intrusions: a new interpretation. Geology 5:273–277

    Article  Google Scholar 

  • Irvine TN (1980) Magmatic infiltration metasomatism, double diffusive fractional crystallization, and adcumulus growth in the Muskox intrusion, and other layered intrusions. In: Hargraves RB (ed) Physics of magmatic processes. Princeton Univ Press, Princeton, pp 325–385

    Google Scholar 

  • Jacquemin H, Sheppard SMF, Vidal P (1982) Isotopic geochemistry (O, Sr, Pb) of the Golda Zuelva and Mboutou anorogenic complexes, North Caneroun: mantle origin with evidence for crustal contamination. Earth Planet Sci Lett 61: 97–111

    Article  Google Scholar 

  • Kovach LA, Marsh BD (1981) Magma flow rate and partial fusion of wall rock; Hungtington Lake, CA. Geol Soc Am (Abstracts with Program) 13: 490

    Google Scholar 

  • Liebenberg L (1970) The sulphides in the layered sequence of the Bushveld Igneous Complex. Geol Soc S Afr, Spec Publ 1: 108–207

    Google Scholar 

  • Mainwaring PR, Douthitt CB (1981) Carbon isotope study of graphitic sulfides in the Duluth Complex, Minnesota, USA (Abstracts). Geol Assoc Can 6:A–37

    Google Scholar 

  • Mainwaring PR, Naldrett A J (1977) Country rock assimilation and the genesis of Cu - Ni sulfides in the Water Hen intrusion, Duluth Complex, Minnesota. Econ Geol 72: 1269–1284

    Article  Google Scholar 

  • Myers JD, Sinha AK, Marsh BD (1983) Assimilation of crustal material by basaltic magma: Strontium isotopic and trace element data from the Edgecumbe Volcanic Field, S. E. Alaska. J Petrol 25, 1: 1–26

    Google Scholar 

  • Naldrett AJ (1981) Nickel sulfide deposits: classification, composition, and genesis. Econ Geol 75th Anniversary Vol 2: 628–685

    Google Scholar 

  • Page NJ (1979) Stillwater Complex, Montana — structure, mineralogy, and petrology of the Basal zone with emphasis on the occurrence of sulfides. US Geol Surv Prof Pap 1038: 1–69

    Google Scholar 

  • Pasteris JD (1984) Further interpretation of the Cu-Fe-Ni sulfide mineralization in the Duluth Complex, northeastern Minnesota. Can Miner 22: 39–53

    Google Scholar 

  • Rao BV, Ripley EM (1983) Petrochemical studies of the Dunka Road Cu-Ni deposit. Econ Geol 78: 1222–1238

    Article  Google Scholar 

  • Rao BV, Naldrett A J, Evensen NM (1984) Crustal contamination in the sublayer, Sudbury igneous complex: A combined trace element and strontium isotope study. Geol Assoc Can (Abstrat with Program) 9: 98

    Google Scholar 

  • Ripley EM (1981) Sulfur isotopic studies of the Dunka Road Cu-Ni Deposit, Duluth Complex, Minnesota. Econ Geol 76: 610–620

    Article  Google Scholar 

  • Ripley EM (1983) Sulfide mineralogy and sulfur isotope geochemistry of layered sills in the Deer Lake Complex, Minnesota. Mineral Depos 18: 3–15

    Article  Google Scholar 

  • Ripley EM, Al-Jassar T (1983) Oxygen isotopic studies of the Babbitt Cu-Ni prospect, Duluth Complex, Minnesota (Abstracts). Geol Soc Am (Abstract with Program) 15: 671

    Google Scholar 

  • Ripley EM, Nicol DL (1981) Sulfur isotopic studies of Archean slate and graywacke from Northern Minnesota: Evidence for the existence of sulfate-reducing bacteria. Geochim Cosmochim Acta 45: 839–847

    Article  Google Scholar 

  • Sasaki A (1969) Sulfur isotope study of the Muskox intrusion, District of MacKenzie. Geol Surv Can Pap 68–46: 68 pp

    Google Scholar 

  • Shima H, Naldrett A J (1975) Solubility of sulfur in an ultramafic melt and the relevance of the system Fe-S-O. Econ Geol 60: 960–967

    Article  Google Scholar 

  • Shima M, Gross WH, Thode HG (1963) Sulfur isotope abundances in basic sills, differentiated granites, and meteorites. J Geophys Res 68: 2835–2847

    Article  Google Scholar 

  • Taylor HP Jr (1980) The effects of assimilation of country rocks by magmas on 180/160 and 87Sr/86Sr systematics in igneous rocks. Earth Planet Sci Lett 47: 243–254

    Article  Google Scholar 

  • Taylor HP Jr, Giannetti B, Turi B (1979) Oxygen isotope geochemistry of the potassic igneous rocks from the Roccamonfina volcano, Roman comagmatic region, Italy. Earth Planet Sci Lett 46: 81–106

    Article  Google Scholar 

  • Thode HG, Goodwin AM (1983) Further sulfur and carbon isotope studies of late Archaean Iron- Formations of the Canadian Shield and the rise of sulfate-reducing bacteria. Precambrian Res 20: 337–356

    Article  Google Scholar 

  • Thompson RN, Dickin AP, Gibson IL, Morrison MA (1982) Elemental fingerprints of isotopic contamination of Hebrideau Paleocene mantle-derived magmas by Archaean sial. Contrib Mineral Petrol 79: 159–168

    Article  Google Scholar 

  • Tyson RM, Chang LLY (1984) The petrology and sulfide mineralization of the Patridge River troctolite, Duluth Complex, Minnesota. Can Miner 22: 23–38

    Google Scholar 

  • Vinogradov AP, Grinenko LN (1964) On the influence of including rocks on the isotopic composition of ore sulfides. Geokhimiya 9: 491–499

    Google Scholar 

  • Walther JV, Orville PM (1982) Volatile production and transport in regional metamorphism. Contrib Mineral Petrol 79: 252–257

    Article  Google Scholar 

  • Watson EB (1982) Basalt contamination by continental crust: some experiments and models. Contrib Mineral Petrol 80: 73–87

    Article  Google Scholar 

  • Weiblen PW, Morey GB (1976) Textural and compositional characteristics of sulfide ore from the basal contact zone of the South Kawishiwi intrusion, Duluth Complex, northeastern Minnesota. Proc 49th Annu Minn Sect AIME, 24 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ripley, E.M. (1986). Application of Stable Isotopic Studies to Problems of Magmatic Sulfide Ore Genesis With Special Reference to the Duluth Complex, Minnesota. In: Friedrich, G.H., Genkin, A.D., Naldrett, A.J., Ridge, J.D., Sillitoe, R.H., Vokes, F.M. (eds) Geology and Metallogeny of Copper Deposits. Special Publication No. 4 of the Society for Geology Applied to Mineral Deposits, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70902-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70902-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70904-3

  • Online ISBN: 978-3-642-70902-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics