Skip to main content

Interaction of Insecticides with the Nervous System

  • Conference paper
Toxicology of Pesticides

Part of the book series: NATO ASI Series ((ASIH,volume 13))

Abstract

The majority of modern insecticides owe their toxicity to their ability to attack the nervous system. Insect have a very well-developed nervous system, sometimes comparable in organization, although different and simpler, to that of mammals (Matsumura, 1985). Poisoning of insect nervous system easily disrupts their physiological mechanisms; most insecticides, however, are also toxic to nontarget organisms, including human. Understanding the mechanism of action of pesticides is a major and fundamental task for pesticide toxicologists, as the knowledge of the mechanism of action of drugs is of vital importance for pharmacologists. Although there are cases (e.g. aspirin) where the mechanism of action of a drug has been discovered long after the beginning of its common and successful use, a great emphasis is given today to address mechanistic questions in the initial stages of the development of a new drug or pesticide. It is far beyond the scope of this chapter to review the neurotoxicology of pesticides, and I will concentrate only on selected aspects of mechanistic studies of pesticide neurotoxicity, with special emphasis on their interaction with neurotransmitter receptors. I refer the interested reader to various books and reviews published in the last few years (Murphy, 1980; Ecobichon and Joy, 1982; Matsumura, 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abalis IM, Eldefrawi ME, Eldefrawi AT (1985a). High-affinity stereospecific binding of cyclodiene insecticides and gammahexachlorocyclohexane to gamma-aminobutyric acid receptors of rat brain. Pestic. Biochem. Physiol. 24: 95–102.

    Article  CAS  Google Scholar 

  • Abalis IM, Eldefrawi ME, Eldefrawi AT (1985b). Binding of GABA receptor channel drugs to a putative voltage-dependent chloride channel in Torpedo Electric organ. Biochem. Pharmacol. 34: 2579–2581.

    CAS  Google Scholar 

  • Abalis IM, Eldefrawi ME, Eldefrawi, AT (1986a). Effects of insecticides on GABA-induced chloride influx into rat brain microsacs. J. Toxicol. Environ. Health 18: 13–23

    Article  PubMed  CAS  Google Scholar 

  • Abalis IM, Eldefrawi AT, Eldefrawi ME (1986b). Action of avermectin B1a, on GABAA receptor and chloride channels in rat brain. J. Biochem. ToxiSol. 1:69–82.

    Article  CAS  Google Scholar 

  • Bailey BA, Martin RJ, Downer RGH (1982). Monoamine oxidase inhibition and brain catecholamine levels in the rat following treatment with chlordime-form. Pestic. Biochem. Physiol. 17: 293–300.

    Article  CAS  Google Scholar 

  • Barnes JM, Denz FA (1951). The chronic toxicity of p-nitrophenyl diethyl thiophosphate (E605). J. Hyg. 49: 430–441.

    Article  CAS  Google Scholar 

  • Beeman RW, Matsumura F (1973). Chlordimeform: a pesticide acting upon amine regulatory mechanisms. Nature 242: 273–274.

    Article  PubMed  CAS  Google Scholar 

  • Benezet JJ, Chang KM, Knowles 00 (1976). Formamidine pesticides: metabolic aspects of meurotoxicity. IN: Pesticide and Venom Neurotoxicity (Shank-pand DL, Hollingworth RM, Smyth T, eds), Plenum Press, New York, pp. 789–206.

    Google Scholar 

  • Bignami G, Rosic N, Michalek H, Milosevic M, and Gatti GL (1975). Behavioral toxicity of anticholinesterase agents: methodological, neurochemical and neuropsychological aspects. In: Behavioral Toxicology (Weiss B, Laties VG, eds.), Plenum Press, New York, pp. 155–215.

    Google Scholar 

  • Boyes WK, Moser VC, MacPhail RC, Dyer RS (1985). Monoamine oxidase inhibition cannot account for changes in visual evoked potentials produced by chlordimeform. Neuropharmacol. 24: 853–860.

    Article  CAS  Google Scholar 

  • Casida JE, Gammon DW, Glickman AH, Lawrence LJ (1983). Mechanisms of selective action of pyrethroid insecticides. Ann. Rev. Pharmacol. Toxicol. 23: 413–438.

    Article  CAS  Google Scholar 

  • CoSta LG (1985). Inhibition of gamma-[3H] aminobutyric acid uptake by orga-notin compounds in vitro. Toxicol. Appl. Pharmacol. 79: 471–479.

    Article  PubMed  CAS  Google Scholar 

  • Costa LG (1986). Organophosphorus compounds. In: Recent Advances in Nervous System Toxicology (Galli CL, Manzo L, Spencer PS, eds.), Plenum Press, New York (in press).

    Google Scholar 

  • Costa LG, Murphy SD (1982). Passive avoidance retention in mice tolerant to the organophosphorus insecticide disulfoton. Toxicol. Appl. Pharmacol. 65: 451–458.

    Article  PubMed  CAS  Google Scholar 

  • Gosta LG, Murphy SD (1986). Interaction of the pesticide chlordimeform with adrenergic receptors in mouse brain: an in vitro study. Arch. Toxicol, (submitted).

    Google Scholar 

  • Gosta LG, Schwab BW, Murphy SD (1982). Tolerance to anticholinesterase compounds in mammals. Toxicology 25: 79–97.

    Article  Google Scholar 

  • Costa LG, Kaylor G, Murphy SD (1986). Carbachol- and norepinephrine- stimulated phosphoinositide metabolism in rat brain: effect of chronic Cholinesterase inhibition. J. Pharmacol. Exp. Ther. (in press).

    Google Scholar 

  • Cutkomp LK, Koch RB, Desaiah D (1982). Inhibition of ATPases by chlorinated hydrocarbons. In: Insecticide mode of action (Coats JR, ed.), Academic Press, New York, pp. 45–69.

    Google Scholar 

  • David JC, Coulon JF (1985). Octopamine in invertebrates and vertebrates. A review. Progr. Neurobiol. 24: 141–185.

    Article  CAS  Google Scholar 

  • Desaiah D (1982). Biochemical mechanisms of chlordecone neurotoxicity. A review. Neurotoxicology 3: 103–110.

    PubMed  CAS  Google Scholar 

  • Devaud LL, Szot P, Murray TF (1986). PK 11195 antagonism of pyrethroid-induced proconvulsant activity. Eur. J. Pharmacol, 120: 269–273.

    Article  Google Scholar 

  • Doherty JD (1985). Membrane effects of pesticides. In: Neurotoxicology (Blum K, Manzo L, eds.), Marcel Dekker Inc., Basel, pp. 405–421.

    Google Scholar 

  • Ecobichon DJ (1982). Organophosphorus ester insecticides. In: Pesticides and Neurological Diseases (Ecobichon DJ, Roy RM, eds.), CRC Press, Boca Raton, pp. 15–52.

    Google Scholar 

  • Ecobichon DJ, Joy RM (eds.) (1982). Pesticides and Neurological Diseases. CRC Press, Boca Raton, pp. 280.

    Google Scholar 

  • Enna SJ, Gallagher JP (1983). Biochemical and electrophysiological characteristics of mammalian GABA receptors. Int. Rev. Neurobiol. 24: 181–212.

    Article  PubMed  CAS  Google Scholar 

  • Evans PD (1980a). Biogenic amines in the insect nervous system. Adv. Insect Physiol. 15: 317–473.

    Article  CAS  Google Scholar 

  • Evans PD (1980b). Octopamine receptors in insects. In: Receptors for Neurotransmitters, Hormones and Pheromones in Insects (Sattelle DB, Hall LM, Hildebrand JG, eds.), Elsevier, New York, pp. 245–258.

    Google Scholar 

  • Evans PD, Gee JD (1980). Action of formamidine pesticides on octopamine receptors. Nature 287: 60–62.

    Article  PubMed  CAS  Google Scholar 

  • Gammon DW, Sander G (1985). Two mechanisms of pyrethroid action: electrophysiological and pharmacological evidence. Neurotoxicol. 6: 63–86.

    CAS  Google Scholar 

  • Gardner R, Ray R, Trankenheim J, Wallace K, Loss M, Robichand R (1984). A possible mechanism for diispropylfluorophosphate-induced memory loss in rats. Pharmacol. Biochem. Behav. 21: 43–46.

    CAS  Google Scholar 

  • Ghiasuddin SM, Soderlund DM (1985). Pyrethroid insecticides: potent stere-ospecific enhancers of mouse brain sodium channel activation. Pestic. Biochem. Physiol. 24: 200–206.

    Article  CAS  Google Scholar 

  • Giardmi V, Meneguz A, Amorico L, DeAcetis L, Bignami G (1982). Behaviorally augmented tolerance during chronic Cholinesterase reduction by paraox-on. Neurobehav. Toxicol. Teratol. 4: 335–345.

    Google Scholar 

  • Gupta RC, Patterson GT, Deltbarn WD (1985a). Mechanisms involved in the development of tolerance to DFP toxicity. Fund. Appl. Toxicol. 5: 517–528.

    Article  Google Scholar 

  • Gupta RC, Rech RH, Lovell KL, Welsch F, Thornburg JE (1985b). Brain cholinergic, behavioral and morphological development in rats exposed in utero to methylparathion. Toxicol. Appl. Pharmacol. 77: 405–413.

    CAS  Google Scholar 

  • Hollingworth RM, Lund AE (1982). Biological and neurotoxic effects of amidine pesticides. In: Insecticide Mode of Action (Coats JR, ed), Academic Press, New York, pp. 198–227.

    Google Scholar 

  • Hollingworth RM, Leister J, Ghali G (1979). Mode of action of formamidine pesticides: an evaluation of monoamine oxidase as the target. Chem. Biol. Interactions 24: 35–49.

    Article  CAS  Google Scholar 

  • Hsu WH, Kakuk TJ (1984). Effect of Amitraz and chlordimeform on heart rate and pupil diameter in rats: mediated by alpha2-adrenoceptors. Toxicol. Appl. Pharmacol. 73: 411–415.

    Article  PubMed  CAS  Google Scholar 

  • Hsu WH, Lu ZX, Hembrough FB (1986). Effect of Amitraz on heart rate and aortic blood pressure in conscious dogs: influence of atropine, prazosin,tolazoline and yohimbine. Toxicol. Appl. Pharmacol. 84: 418–422.

    Article  PubMed  CAS  Google Scholar 

  • Joy RM (1982). Chlorinated Hydrocarbon Insecticides. In: Pesticides and Neurological Diseases (Ecobichon DJ, Joy RM, eds.), CRC Press, Baton Rouge, pp. 91–150.

    Google Scholar 

  • Kaddous AA, Ghiasuddin SM, Matsumura F, Scott JG, Tanaka K (1983). Difference in the picrotoxinin receptor between the cyclodiene-resistant and susceptible strains of the german cockroach. Pestic. Biochem. Physiol. 19: 157–166.

    Article  Google Scholar 

  • Lawrence LJ, Casida JE (1983). Stereospecific action of pyrethroid insecticides on the gamma-aminobutyric acid receptor-ionophore complex. Science 221: 1399–1401.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence LJ, Casida JE (1984). Interactions of lindane, toxaphene and cyc-lodienes with brain-specific t-butylbicyclophosphorothionate receptors. Life Sci. 35: 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence LJ, Gee KW, Yamamura HI (1985). Interations of pyrethroid insecticides with chloride ionophore-associated binding sites. Neurotoxicol. 6:87–98.

    CAS  Google Scholar 

  • Levy A (1981). The effect of Cholinesterase inhibition on the autogenesis of central muscarinic receptors. Life Sci. 29: 1065–1070.

    Article  PubMed  CAS  Google Scholar 

  • Loullis CC, Dean RL, Lippa AS, Meyerson LR, Beer B, Bartus RT (1983). Chronic administration of cholinergic agents: effects on behavior and calmoduli. Pharmacol. Biochem. Behav. 18: 601–604.

    Article  PubMed  CAS  Google Scholar 

  • Lund AE, Yim GKW, Shankland DL (1976). The cardiovascular toxicity of chlo-rdimeform: a local anesthetic-like action. In: Pesticide and Venom Neurotoxicity (Shankland DL, Hollingworh RM, Smyth T, eds.), Plenum Press, New York, pp. 171–177.

    Google Scholar 

  • Matsumura F (ed.) (1985). Toxicology of Insecticides. Plenum Press, New York, pp. 598.

    Google Scholar 

  • Matsumura F, Ghiasuddin SM (1983). Evidence for similarities between cyclo-diene type insecticides and picrotoxinin in their action mechanisms. J. Environ. Sci. Health B 18: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura F, Tanaka K (1984). Molecular basis of neuro-excitatory actions of cyclediene-type insecticides. In: Gellular and Molecular Neurotoxi-cology (Narahashi T, ed), Raven Press, New York, pp. 225–240.

    Google Scholar 

  • Mcdonald BE, Gosta LG, Murphy SD (1986). Memory impairment following repeated organophosphate exposure. Pharmacologist 28: 226.

    Google Scholar 

  • Metcalf DR, Holmes JH (1969). EEG, psychologixal and neurological alterations in humans with organophosphorus exposure. Am. N.Y. Acad. Sci. 160: 357–365.

    Article  CAS  Google Scholar 

  • Michalek H, Pintor A, Ebrtuna S, Bisso GM (1985). Effects of diisopropylfl-uorophosphate on brain cholinergic systems of rats at early developmental stages. Fund. Appl. Toxicol. 5: S204-S212.

    Article  CAS  Google Scholar 

  • Moser VC, MacPhail RC (1985). Yohimbine attenuates the delayed lethality induced in mice by amitraz, a formamidine pesticide. Toxicol. Lett. 28: 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Murphy SD (1980). Pesticides In: Casarett and Doull’s Toxicology (Doull J, Klassen CD, Amdur MO, eds.), MacMillan, New York, pp. 357–408.

    Google Scholar 

  • Narahashi T (1984). Nerve membrane sodium channels as the target of pyreth-roids. In: Cellular and Molecular Neurotoxicology (Narahashi T, ed.), Raven Press, New York, pp. 85–108.

    Google Scholar 

  • Nathanson JA (1985). Characterization of octopamine-sensitive adenylate cyclase: elucidation of a class of potent and selective octopamine-2 receptor agonists with toxic effects in insects. Proc. Natl. Acad. Sci. USA 82: 599–603.

    Article  PubMed  CAS  Google Scholar 

  • Olianas MC, Onali P, Schwartz JP, Neff NH, Costa E (1984). The muscarinic receptor adenylate cyclase complex of rat striatum: desensitization following chronic inhibition of acetyl- Cholinesterase activity. J. Neuro-chem. 42: 1439–1443.

    CAS  Google Scholar 

  • Olsen RW (1981). The GABA postsynaptic membrane receptor-ionophore complex. Mol. Cell. Biochem. 39: 261–279.

    Article  PubMed  CAS  Google Scholar 

  • Pong SS, Wang CC (1982). Avermectin B modulation of gammaaminobutyric acid receptors in rat brain membranes. J. Neurochem. 38: 375–379.

    Article  PubMed  CAS  Google Scholar 

  • Pong SS, Wang CC, Ftitz LC (1980). Studies on the mechanism of action of avermectin B1a.: stimulation of release of gammaaminobutyric acid from brain synaptosomes. J. Neurochem. 34: 351–358.

    Article  PubMed  CAS  Google Scholar 

  • Raiteri M, Marchi M, Paudice P (1981). Adaptation of presynaptic acetylcholine autoreceptors following long-term drug treatment. Eur. J. Pharmacol. 74: 109–110.

    Article  PubMed  CAS  Google Scholar 

  • Reiter L, Talens G, Woolley D (1973). Acute and subacute parathion treatment: effects on Cholinesterase activities and learning in mice. Toxicol. Appl. Pharmacol. 25: 582–588.

    Article  PubMed  CAS  Google Scholar 

  • Robinson CP, Smith PW (1977). Lack of involvement of monoamine oxidase inhibition in the lethality of acute poisoning by chlordimeform. J. Toxicol. Env. Health 3: 565–568.

    Article  CAS  Google Scholar 

  • Robinson CP, Bittle I (1979). Vascular effects of demethylchlordimeform, a metabolite of chlordimeform. Pestic. Biochem. Physiol. 11: 46–55.

    Article  CAS  Google Scholar 

  • Russell RW, Vasquez BJ, Overstreet DH, Dalglish FW (1971). Effects of chol-inolytic agents on behavior following development of tolerance to low Cholinesterase activity. Psychopharmacologia (Berl.) 20: 32–41.

    Article  CAS  Google Scholar 

  • Russell RW, Carson VG, Booth RA, Jenden DJ (1981) Mechanisms of tolerance to the anticholinesterase DFP: acetylcholine levels and dynamics in the rat brain. Neuropharmacol. 20: 1197–1201.

    Article  CAS  Google Scholar 

  • Schwab BW, Murphy SD (1981). Induction of anticholinesterase tolerance in rats with doses of disulfoton that produce no cholinergic signs. J. Toxicol. Env. Hlth. 8: 199–204.

    Article  CAS  Google Scholar 

  • Shankland DL (1979). Action of dieldrin and related compounds on synaptic transmission. IN: Neurotoxicology of Insecticides and Pheromones (Narahashi T, ed.), Plenum Press, New York, pp. 139–153.

    Google Scholar 

  • Spyker JM, Avery DL (1977). Neurobehavioral effects of prenatal exposure to the organophosphate diazinon in mice. J. Toxicol. Ehv. Health 3: 989–1002.

    Article  CAS  Google Scholar 

  • Squires RF, Casida JE, Richardson M, Saederup E (1983). [35S]t-Butyl bicyclophosphorothionate binds with high affinity to brain-specific sites coupled to gamma-aminobutyric acid A and ion recognition sites. Mol. Pharmacol. 23: 326–336.

    Google Scholar 

  • Talens G, Woolley D (1973). Effects of parathion administration during gestation in the rat on development of the young. Proc. West. Pharmacol. Soc. 16: 141–145.

    CAS  Google Scholar 

  • Tanaka K, Scott JG, Matsumura F (1984). Picrotoxinin receptor in the central nervous system of the american cockroach: its role in the action of cyclodiene type insecticides. Pestic. Biochem. Physiol. 22: 117–127.

    Article  CAS  Google Scholar 

  • Verschoyle RD, Aldridge WN (1980). Structure-activity relationships of some pyrethroids in rats. Arch. Toxicol. 45: 325329.

    Google Scholar 

  • Yamaguchi I, Matsumura F, Kadous AA (1980). Heptachlor epoxide: effects on calcium-mediated transmitter release from brain synoptosomes in rat. Biochem. Pharmacol. 29: 1815–1823.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Costa, L.G. (1987). Interaction of Insecticides with the Nervous System. In: Costa, L.G., Galli, C.L., Murphy, S.D. (eds) Toxicology of Pesticides. NATO ASI Series, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70898-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70898-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70900-5

  • Online ISBN: 978-3-642-70898-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics