Skip to main content

Role of Metabolism in Pesticide Selectivity and Toxicity

  • Conference paper
Toxicology of Pesticides

Part of the book series: NATO ASI Series ((ASIH,volume 13))

  • 372 Accesses

Abstract

Ideally, pesticides will be selectively toxic to target organisms and non-toxic to non-target or desirable organisms. Theoretically, this might be achieved by several means. First, a pesticidal chemical might be designed or selected which uniquely attacks a functional or structural bio-system that is peculiar to the pest organism and which is either absent in or less critical to the desirable organism. Examples of this would include: the use of red squill as a rodenticide, particularly useful because rats do not effectively vomit the material whereas other mammals do; or the use of chitin synthetase inhibitors which are selectively toxic to invertebrates with exoskeleton and nontoxic, or generally much less toxic, to mammalian organisms; or the use of juvenile hormones which affect the peculiar metamorphic development of insects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alary, K. P. and Brodeur, J. Studies on the mechanism of phenobarbital-induced protection against parathion in adult female rats. J Pharmacol Exp Therap 169:159–167, (1969).

    CAS  Google Scholar 

  • Baker, E.L., Zack, M., Miles, J.W., Alderman, L., Warren, M., Dobbin, R.D., Miller, S. and Teeters, W.R. Epidemic malathion poisoning in Pakistan malaria workers. Lancet 1:31–34, (1978).

    Article  PubMed  CAS  Google Scholar 

  • Bleeke, M.S., Smith, M.T., and Casida, J.E. Metabolism and toxicity of metribuzin in mouse liver. Pest Biochem Physiol 22:123–130, (1985).

    Article  Google Scholar 

  • Brodie, B.B., Axelrod, J., Cooper, J.R., Gaudette, L., LaDu, B.N., Mitoma, C., and Undenfriend, S. Detoxification of drugs and other foreign compounds by liver microsomes. Science 121:603–604, (1955).

    Article  PubMed  CAS  Google Scholar 

  • Casida, J.E. Propesticides:bioactivation in pesticide design and toxicological evaluation in Pesticide Chemistry:Human Welfare and the Environment. Vol. 3, J. Miyamoto etal, eds. Pergamon Press, Oxford, pp 239–246, (1983).

    Google Scholar 

  • Casida, J.E., Gammon, D.W., Glickman, A.H., and Lawrence, L.J. Mechanisms of selective action of pyrethroid insecticides. Ann Rev Pharmacol Toxicol 23:413–438, (1983).

    Article  CAS  Google Scholar 

  • Davison, A.N., The conversion of schradan (OMPA) and Parathion into inhibitors of Cholinesterase by mammalian liver. Biochem J. 61:203–209, (1955)

    PubMed  CAS  Google Scholar 

  • Diggle, W.W., and Gage, J.C. Cholinesterase inhibition by parathion in vivo. Nature 168:998, (1951).

    Article  PubMed  CAS  Google Scholar 

  • DuBois, K.P. Combined effects of pesticides. Can Med Assoc J 100:173–179, (1969).

    PubMed  CAS  Google Scholar 

  • DuBois, K.P., Doull, J., and Coon, J.W., (1950). Studies on the toxicity and pharmacologic action of octamethyl pyrophosphoramide (OMPA;Pestox HI). J Pharmacol Exper Therap 99:376–393.

    CAS  Google Scholar 

  • DuBois, K.P. and Mangun, G.H. Effect of hexaethyl tetraphosphate on choline esterase in vitro and in vivo. Proc Soc Exper Biol Med 64:137–139, (1947).

    CAS  Google Scholar 

  • Frawley, J.P., Fuyat, H.N., Hagen, E.C., Blake, J.R., and Fitzhugh, O.G. Marked potentiation in mammalian toxicity from simultaneous administration of two anticholinesterase compounds. J Pharmacol Exper Therap 121:96–106, (1957).

    CAS  Google Scholar 

  • Glickman, A.H. and Casida, J.E. Species and structural variations affecting pyrethroid neurotoxicity. Neurobehav Toxicol and Teratol 4:793–799, (1982).

    CAS  Google Scholar 

  • Hollingworth, R.M. Dealkylation of organophosphorus triester by liver enzymes. In: Biochemical Toxicology of Insecticides. R.D. O’Brien and I Yamamoto, eds. New York: Academic Press, Inc., New York, 1970, pp75–92.

    Google Scholar 

  • Kamienski, F.X., and Murphy, S.D. Biphasic effects of methylenedioxyphenyl synergists on the action of hexobarbital and organophosphate insecticides in mice. Toxicol Appl Pharmacol 18:883–894,(1971).

    Article  PubMed  CAS  Google Scholar 

  • Krueger, H.R., and O’Brien, R.D. Relationships between metabolism and differential toxicity of malathion in insects and mice. J Econ Entomol 52:1063–1067, (1959).

    CAS  Google Scholar 

  • Krueger, H.R., O’Brien, R.D., and Dauterman, W.C. Relationship between metabolism and differential toxicity in insects and mice of diazinon, dimethoate, parathion and acethion. Econ Entomol 53:25–31, (1960).

    CAS  Google Scholar 

  • Levine, B.S., and Murphy, S.D. Esterase inhibition and reactivation in relation to piperonyl butoxide-phosphorothionate interactions. Toxicol Appl Pharmacol 40 379–391, (1977a).

    Article  PubMed  CAS  Google Scholar 

  • Levine, B.S., and Murphy, S.D. Effect of piperonyl butoxide on the metabolism of dimethyl and diethyl phosphorothionate insecticides. Toxicol Apl Pharmacol 40:393–406, (1977b).

    Article  CAS  Google Scholar 

  • Matsumura, F., and Brown, A.W.A. Studies on carboxylesterase in malathion-resistant culex tarsalis. J Econ Entomol 56:381–388, (1963).

    CAS  Google Scholar 

  • Matsunaka, S. Propanil hydrolysis: inhibition in rice plants by insecticides. Science 160:1360–1361,(1968).

    Article  PubMed  CAS  Google Scholar 

  • Miles, J.W., Mount, D.L., Staiger, M.A., and Teeters, W. R. S-Methyl isomer content of stored malathion and fenitrothion water-dispersible powders and its relationship to toxicity. J Agric Food Chem 27:421–425, (1979).

    Article  PubMed  CAS  Google Scholar 

  • Mirer, F.E., Levine, B.S., and Murphy, S.D. Parathion and methyl parathion toxicity and metabolism in piperonyl butoxide and diethyl maleate pretreated mice. Chem Biol Inter 17:99–112, (1977).

    Article  CAS  Google Scholar 

  • Murphy, S.D. Liver metabolism and toxicity of thiophosphate insecticides in mammalian, avian and piscine species. Proc Soc Exp Biol Med 123:392–403, (1966).

    CAS  Google Scholar 

  • Murphy, S.D. Mechamisms of pesticide interactions in vertebrates. Residue Reviews, 25:201–221, (1969).

    PubMed  CAS  Google Scholar 

  • Murphy, S.D. Introductory remarks: Symposium on the role of biotransformation of non-hepatic microsomal mechanisms in altering toxicity. Toxicol Appl Pharmacol 23:738–740, (1972a).

    Article  Google Scholar 

  • Murphy, S.D. The toxicity of pesticides and their metabolites. In: Degradation of Synthetic Organic Molecules in the Biosphere. Procedings of a Conference of the National Academy of Sciences. NAS Press, Washington, D.C. pp313–335, (1972b).

    Google Scholar 

  • Murphy, S.D. Assessment of the potential for toxic interactions among environmental pollutants. In: The Principles and Methods in Modern Toxicology. C.L. Galli, S.D. Murphy, and R. Paoletti, eds. Amsterdam: Elsevier/North-Holland Biomedical Press, 1980, pp 277–294.

    Google Scholar 

  • Murphy, S.D. Toxic effects of pesticides. In: Toxicology-The Basic Science of Poisons. 3rd ed. C.D. Klaassen, M.O. Amdur, J. Doull, eds. Macmillan Pub Co., New York, pp519–581, (1986).

    Google Scholar 

  • Murphy, S.D., Anderson, R.L., and DuBois, K.P. Potentiation of the toxicity of malathion by triorthotolyl phosphate. Proc Soc Exp Biol Med 100:483–487, (1959).

    PubMed  CAS  Google Scholar 

  • Murphy, S.D., Cheever, K.L., Chow, A.Y.K., and Brewster, M. Organophosphate insecticide potentiation by carboxylesterase inhibitors. Proc Europ Soc Tox XVII, Excerpta Medica Internat. Cong. 376:292–300, (1976).

    Google Scholar 

  • Murphy, S.D., Costa, L.G., and Wang, C. Organophosphate insecticide interaction at primary receptors and secondary receptors. In: Cellular and Molecular Neurotoxicology. T. Narahashi. Raven Press, New York, ppl65–176, (1984).

    Google Scholar 

  • Murphy, S.D., and DuBois, K.P. Metabolic conversion of ethyl-p-nitrophenyl thionobenzene phosphonate (EPN) to an anticholinesterase agent. Fed. Proc. 15:462, (1956).

    Google Scholar 

  • Murphy, S.D., and DuBois, K.P. Enzymatic conversions of the dimethoxy ester of benzotriazine dithiophospheric acid to an anticholinesterase agent. J. Pharmacol Exper Therap, 119:572–583, (1957).

    CAS  Google Scholar 

  • Murphy, S.D., Lauwerys, R.R., and Cheever, K.L. Comparative anticholinesterase action of organophosphate insecticides in vertebrates. Toxicol Appl Pharmacol 12:22–35, (1968).

    Article  PubMed  CAS  Google Scholar 

  • Myers, D.K., Mendel B., Gersmann, H.R., and Ketelaar, J.A.A. Oxidation of thiophosphate insecticides in the rat. Nature 170:805–807, (1952).

    Article  PubMed  CAS  Google Scholar 

  • Nakatsugawa, T., and Dahm, P.A. Microsomal metabolism of parathion. Biochem Pharmacol 16:25–38, (1967).

    Article  CAS  Google Scholar 

  • Neal, R. A. Studies on the metabolism of diethyl 4-nitrophenyl phosphorothionate (parathion) in vitro. Biochem J 103:183–191, (1967).

    PubMed  CAS  Google Scholar 

  • Neal, R.A., and DuBois, K.P. Studies on the mechamism of detoxification of cholinergic phosphorothionates. J. Pharmacol Exp Ther 148:185–192, (1965).

    PubMed  CAS  Google Scholar 

  • Poore, R.E., and Neal, R.A. Evidence for extrahepatic metabolism of parathion. Toxicol Appl Pharmacol 23:759–768, (1972).

    Article  PubMed  CAS  Google Scholar 

  • Shuphan, I., Sejull, Y., Rosen, J.D., and Casida, J.E. Toxicological significance of oxidation and rearrangment reactions of S-Chloroallyl thio and dithiocarbamate herbicides. In: Sulfur in Pesticide Action and Metabolism. ACS Symposium Series No. 158, J.D. Rosen, P.S. Magee and J. E. Casida, eds. Washington, D.C.: American Chemical Society, 1981, pp65–82.

    Chapter  Google Scholar 

  • Singleton, S.D., and Murphy, S.D. Propanil (3,4-dichloropropionanilide)-induced methemoglobin formation in mice in relation to acylamidase activity. Toxicol Appl Pharmacol 25:20–29, (1973).

    Article  PubMed  CAS  Google Scholar 

  • Su, M., Kinoshita, F.K., Frawley, J.P., and DuBois, K.P. Comparative inhibition of aliesterases and Cholinesterase in rats fed eighteen organophosphorus insecticides. Toxicol Appl Pharmacol 20:241–249, (1971).

    Article  PubMed  CAS  Google Scholar 

  • Talcott, R.E., Mallipudi, N.M., Umetsu, N., and Fukuto, T.R. Inactivation of esterases by impurities isolated from technical malathion. Toxicol Appl Pharmacol 49:107–112, (1979).

    Article  PubMed  CAS  Google Scholar 

  • Wang, C., and Murphy, S.D. Kinetic analysis of species difference in acetylcholinestease sensitivity to organophosphate insecticides. Toxicol Appl Pharmacol 66:409–419, (1982).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Murphy, S.D. (1987). Role of Metabolism in Pesticide Selectivity and Toxicity. In: Costa, L.G., Galli, C.L., Murphy, S.D. (eds) Toxicology of Pesticides. NATO ASI Series, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70898-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70898-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70900-5

  • Online ISBN: 978-3-642-70898-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics