Water Retention over Flemish Cap

  • S. A. Akenhead
Part of the NATO ASI Series book series (volume 7)


Current meters, T-S analysis, and surface drifters indicate fresh water is retained in a slow gyre over Flemish Cap. Fitted annual cycles of salinity in the top 100 m are used in a simple compartment model to provide a salt flux estimate. About 50% of Cap surface waters are replaced each month. North Atlantic Current water does not influence Cap water composition. Computing heat fluxes from the salt flux predicts the correct phase and appropriate amplitude and mean for the solar heating cycle.


Surface Heat Flux Heat Budget Anticyclonic Gyre Horizontal Flux Labrador Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. T. 1984. Early life history of Redfish (Sebastes spp.) on Flemish Cap. Can. J. Fish. Aquat. Sei. 41(7): 1106–1116.CrossRefGoogle Scholar
  2. Becker, G. A. 1981. Beiträge zur Hydrographie and Wärmebilanz der Nordsee. Deutsche Hydrographische Zeitchrift, 34, H.5, pp. 167–262.CrossRefGoogle Scholar
  3. Bunker, A. F. 1976. Computations of surface energy flux and annual air-sea interaction cycles of the North Atlantic Ocean. Mon. Weather Rev. 104: 1122–1140.CrossRefGoogle Scholar
  4. Hayes, R. M., D. G. Mountain, and T. C. Wolford. 1977. Physical oceanography and the abiotic influences on cod recruitment in the Flemish Cap region. ICNAF Res. Doc. 77/54, Ser. No. 5107.Google Scholar
  5. Grimm, S., A. Furtak, J. Wysaki, M. Baranowski. MS 1980. Distribution and abundance of redfish larvae against thermal conditions on Flemish Cap in April 1978. NAFO SCR Doc. 80/YI/62, Ser. No. N101.Google Scholar
  6. Kudlo, B. P., and V. V. Burmakin. 1972. Water circulation in the South Labrador and Newfoundland areas in 1970–71. ICNAF Redbook 1973, Part III, p. 27–33.Google Scholar
  7. Kudlo, B. P., V.A. Borokov, and N. G. Sapronetskaya. 1983. Results of the Soviet oceanographic investigations in accordance with the Flemish Cap Project in 1977–1982. NAFO SCR Doc. 83/VI/41, Ser. No. N697.Google Scholar
  8. Meehl, G. A. 1985. A calculation of ocean heat storage and effective ocean surface layer depths for the Northern Hemisphere. J. Phys. Oceanogr. 14(11): 1747–1761.CrossRefGoogle Scholar
  9. Land, P. J., and A. F. Bunker. 1982. The annual March of the heat budget of the north and tropical Atlantic Oceans. J. Phys. Oceanogr. 12: 1388–1410.CrossRefGoogle Scholar
  10. Loder, J. W., D. G. Wright, C. Garrett, and B. Juzko. 1982. Horizontal exchange in central Georges Bank. Can. J. Fish. Aquat. Sci. 39: 1130–1137.CrossRefGoogle Scholar
  11. Ross, C. K. 1981. Drift of Sate!lite-tracked buoys on Flemish Cap, 1979–80. NAFO Scientific Council Studies 1: 47–50.Google Scholar
  12. Ross, C. K. 1980. Moored current meter data from Flemish Cap January-July 1979. NAFC SCR Doc. 80/IX/128, Ser. No. N200.Google Scholar
  13. Smith, S. S., and F. W. Dobson. 1984. The heat budget at Ocean Weather Station Bravo. Atmosphere-Ocean 22(1): 1–22.CrossRefGoogle Scholar
  14. Taylor, A. H., and J. A. Stephens. 1980. Seasonal and year to year variations of surface salinity at the nine North Atlantic ocean weather stations. Oceanologica Acta 3(4): 420–430.Google Scholar
  15. Wyrtki, K., and L. Uhrich. 1982. On the accuracy of heat storage computations. J. Phys. Oceanogr. 12: 1411–1416.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • S. A. Akenhead
    • 1
  1. 1.Department of Fisheries and OceansFisheries Research BranchSt, John’sCanada

Personalised recommendations