Skip to main content

Constrained Clustering

  • Conference paper
Develoments in Numerical Ecology

Part of the book series: NATO ASI Series ((ASIG,volume 14))

Abstract

Results of cluster analysis usually depend to a large extent on the choice of a clustering method. Clustering with constraint (time or space) is a way of restricting the set of possible solutions to those that make sense in terms of these constraints. Time and space contiguity are so important in ecological theory that their imposition as an a priori model during clustering is reasonable. This paper reviews various methods that have been proposed for clustering with constraint, first in one dimension (space or time), then in two or more dimensions (space). It is shown, using autocorrelated simulated data series, that if patches do exist, constrained clustering always recovers a larger fraction of the information than the unconstrained equivalent. The comparison of autocorrelated to uncorrected data series also shows that one can tell, from the results of agglomerative constrained clustering, whether the patches delineated by constrained clustering are real. Finally, it is shown how constrained clustering can be extended to domains other than space or time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell, M. A., and P. Legendre. 1987. Multicharacter chronological clustering in a sequence of fossil sticklebacks. Syst. Zool. 36: (in press).

    Google Scholar 

  • Bray, R. J., and J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349.

    Article  Google Scholar 

  • Cliff, A. D., and J. K. Ord. 1981. Spatial processes: models and applications. Pion Limited, London. 266 p.

    Google Scholar 

  • De Soete, G., J.D. Carroll, and W.S. DeSarbo. 1987. Least squares algorithms for constructing constrained ultrametric and additive tree representations of symmetric proximity data. J. Class, (in press).

    Google Scholar 

  • Estabrook, G. F., and D. J. Rogers. 1966. A general method of taxonomic description for a computed similarity measure. Bioscience 16: 789–793.

    Article  Google Scholar 

  • Fisher, W. D. 1958. On grouping for maximum homogeneity. J. Amer. Stat. Ass. 53: 789–798.

    Article  Google Scholar 

  • Gabriel, K. R., and R. R. Sokal. 1969. A new statistical approach to geographic variation analysis. Syst. Zool. 18: 259–278.

    Article  Google Scholar 

  • Galzin, R., and P. Legendre. 1987. The fish communities of a coral reef transect. Pac. Sci. (in press).

    Google Scholar 

  • Gordon, A. D. 1973. Classification in the presence of constraints. Biometrics 29: 821–827.

    Article  Google Scholar 

  • Gordon, A. D., and H. J. B. Birks. 1974. Numerical methods in Quaternary palaeoecology. II. Comparison of pollen diagrams. New Phytol. 73: 221–249.

    Google Scholar 

  • Green, P. J., and R. Sibson. 1978. Computing Dirichlet tessellations in the plane. Computer J. 21: 168–173.

    Google Scholar 

  • Green, P. J., and R. Sibson. 1978. Computing Dirichlet tessellations in the plane. Computer J. 21: 168–173.

    Google Scholar 

  • Hawkins, D. M., and D. F. Merriam. 1973. Optimal zonation of digitized sequential data. J. Int. Assoc. Math. Geology 5: 389–395.

    Article  Google Scholar 

  • Hawkins, D. M., and D. F. Merriam. 1974. Zonation of multivariate sequences of digitized geologic data. J. Int. Assoc. Math. Geology 6: 263–269.

    Article  Google Scholar 

  • Howe, S. E. 1979. Estimating regions and clustering spatial data: analysis and implementation of methods using Voronoi diagrams. Ph. D. Thesis, Department of Mathematics, Brown University.

    Google Scholar 

  • Ibanez, F. 1984. Sur la segmentation des sdries chronologiques planctoniques multivariables. Oceanol. Acta 7: 481–491.

    Google Scholar 

  • Lance, G. N., and W. T. Williams. 1967. A general theory of classificatory sorting strategies. I. Hierarchical systems. Computer J. 9: 373–380.

    Google Scholar 

  • Lebart, L. 1978. Programme d’agregation avec contraintes (C. A. H. contiguit6). Cah. Anal. Donn6es 3: 275–287.

    Google Scholar 

  • Lefkovitch, L. P. 1987. Species associations and conditional clustering: clustering with or without pairwise resemblances. This volume.

    Google Scholar 

  • Legendre, P., B. Baleux, and M. Troussellier. 1984. Dynamics of pollution–indicator and heterotrophic bacteria in sewage treatment lagoons. Appl. Environ. Microbiol. 48: 586–593.

    Google Scholar 

  • Legendre, P., S. Dallot, and L. Legendre. 1985. Succession of species within a community: chronological clustering, with applications to marine and freshwater zooplankton. Am. Nat. 125: 257–288.

    Google Scholar 

  • Legendre, P., and V. Legendre. 1984. Postglacial dispersal of freshwater fishes in the Quebec peninsula. Can. J. Fish. Aquat. Sci. 41: 1781–1802.

    Google Scholar 

  • Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220.

    PubMed  CAS  Google Scholar 

  • Matula, D. W., and R. R. Sokal. 1980. Properties of Gabriel graphs relevant to geographic variation research and the clustering of points in the plane. Geogr. Anal. 12: 205–222.

    Google Scholar 

  • Milligan, G. W. 1983. Characteristics of four external criterion measures, p. 167–173. In J. Felsenstein [ed.] Numerical taxonomy. NATO Advanced Study Institute Series G (Ecological Sciences), No. 1. Springer–Verlag, Berlin.

    Google Scholar 

  • Monestiez, P. 1978. M6thodes de classification automatique sous contraintes spatiales, p. 367–379. In J. M. Legay and R. Tomassone [ed.] Biom6trie et 6cologie. Soci6t6 frangaise de Biom6trie, Paris.

    Google Scholar 

  • Motyka, J. 1947. O zadaniach i metodach badan geobotanicznych. Sur les buts et les m6thodes des recherches gobotaniques. Ann. Univ. Mariae Curie–Sklodowska Sect C, Suppl. I. viii + 168 p.

    Google Scholar 

  • Okabe, A. 1981. Statistical analysis of the pattern similarity between 2 sets of regional clusters. Environment and Planning A 13: 547–562.

    Article  Google Scholar 

  • Openshaw, S. 1974. A regionalisation program for large data sets. Computer Appl. 3–4: 136–160.

    Google Scholar 

  • Rajski, C. 1961. Entropy and metric space, p. 44–45. In C. Cherry [ed.] Information theory. Butterworths, London.

    Google Scholar 

  • Ray, D. M., and B. J. L. Beny. 1966. Multivariate socioeconomic regionalization: a pilot study in central Canada, p. 75–130. In S. Ostry and T. Rymes [ed.] Papers on regional statistical studies. Univ. of Toronto Press, Toronto.

    Google Scholar 

  • Sokal, R. R., N. L. Oden, and J. S. F. Barker. 1987. Spatial structure in Drosophila buzzatii populations: simple and directional spatial autocorrelation. Am. Nat. 129: 122–142.

    Article  Google Scholar 

  • Sokal, R. R., and J. D. Thomson. 1987. Applications of spatial autocorrelation in ecology. This volume.

    Google Scholar 

  • Ward, J. H. Jr. 1963. Hierarchical grouping to optimize an objective function. J. Amer. Stat. Assoc. 58: 236–244.

    Google Scholar 

  • Wartenberg, D. E. Regional analysis: describing multivariate data distributions using geographic information. Manuscript (cited with permission of the author).

    Google Scholar 

  • Webster, R. 1973. Automatic soil–boundary location from transect data. J. Int. Assoc. Math. Geology 5: 27–37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Legendre, P. (1987). Constrained Clustering. In: Legendre, P., Legendre, L. (eds) Develoments in Numerical Ecology. NATO ASI Series, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70880-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70880-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70882-4

  • Online ISBN: 978-3-642-70880-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics