Introduction to Ordination Techniques

  • John C. Gower
Part of the NATO ASI Series book series (volume 14)


The main ordination techniques used in ecology to display data on species and/or sites are described and attention is drawn to three areas of confusion whose clear understanding governs proper use. These are
  1. (i)

    the relevance of different types of data and measurement-scales: (e.g. presence/absence, abundance, biomass, counts, ratio-scales, interval-scales)

  2. (ii)

    the different implicit models that underly what superficially may seem to be similar kinds of display but which are to be interpreted differently (e.g. through distance angle or asymmetry)

  3. (iii)

    the distinction between a two-way table and a multivariate sample (units x variables).


Against this background the following methods are briefly described - Principal Component Analysis; Duality, Q and R-mode Analysis; Principal Coordinates Analysis; Classical Scaling; Metric Scaling via Stress and Sstress; Multidimensional Unfolding; Non-metric Multidimensional Scaling; the effects of closure; Horseshoes; Multiplicative Models; Asymmetry Analysis; Canonical Analysis; Correspondence Analysis; Multiple Correspondence Analysis; Comparison of Ordinations; Orthogonal Procrustes Analysis; Generalised Procrustes Analysis; Individual Differences Scaling and other three-way methods.

The more important methods, not discussed in greater detail elsewhere in t h i s volume, are illustrated by examples and the provenance of suitable software is given.


Correspondence Analysis Multiple Correspondence Analysis Ordination Technique Regular Simplex Generalise Procrustes Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitchison, J. 1983. Principal component analysis of compositional data. Biometrika 70: 57–65.CrossRefGoogle Scholar
  2. Alvey, N. G, C. F. Banfield, R. I. Baxter, J. C. Gower, W. J. Krzanowski, P. W. Lane, P. K. Leech, J. A. Nelder, R. W. Payne, K. M. Phelps, C. E. Rogers, G. J. S. Ross, H. R. Simpson, A. D. Todd, G. Tunnicliffe- Wilson, R. W. M. Wedderburn, R. P. White, and G. N. Wilkinson. 1983. Genstat a general statistical program. Numerical Algorithms Group. Oxford.Google Scholar
  3. Carroll, J. D., and J. J. Chang. 1970. Analysis of individual differences in multidimensional scaling via an n-way generalization of ‘Eckart-Young’ decomposition. Psychometrika 35: 305–308.CrossRefGoogle Scholar
  4. Chayes, F. 1971. Ratio correlation. A manual for s t u d e n t s of petrology and geochemistry. University Press. Chicago.Google Scholar
  5. Constantine, A. G., and J. C. Gower. 1978. Graphical representation of asymmetry. Applied Statistics 20: 297 - 304.CrossRefGoogle Scholar
  6. Constantine, A. G., and J. C. Gower. 1982. Models for the analysis of inter-regional migration. Environment and Planning ‘A’ 14: 477 - 497.PubMedCrossRefGoogle Scholar
  7. Digby, P. G. N., and J. C. Gower. 1981. Ordination between- and within-groups applied to soil classification, p. 63–75. In: D. F. Merriam [ed.] Down to earth statistics: Solutions looking for geological problems. Syracuse University Geological Contributions.Google Scholar
  8. Digby, P. G. N., and R. Kempton. 1986. Multivariate analysis of ecological communities. Chapman and Hall. London (in the press).Google Scholar
  9. Eckart, C., and G. Young. 1936. The approximation of one matrix by another of lower rank. Psychometrika 1: 211–218.CrossRefGoogle Scholar
  10. Gabriel, K. R. 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika 58: 453–467.CrossRefGoogle Scholar
  11. Gifi, A. 1981. Nonlinear multivariate analysis. Department of Data Theory, Faculty of Social Sciences, University of Leiden, Middelstegracht 14, 2312 TW Leiden, The Netherlands.Google Scholar
  12. Gittins, R. 1984. Canonical analysis. Springer Verlag. Berlin.Google Scholar
  13. Gower, J. C. 1971a. A general coefficient of similarity and some of its properties. Biometrics 27: 857–871.CrossRefGoogle Scholar
  14. Gower, J. C. 1971b. Statistical methods of comparing different multivariate analyses of the same data. p. 138–149. In: J. R. Hodson, D. G. Kendall and P. Tautu [eds] Mathematics in the archeological and historical sciences. University Press. Edinburgh.Google Scholar
  15. Gower, J. C. 1975. Generalised Procrustes analysis. Pyschometrika 40: 33–51.CrossRefGoogle Scholar
  16. Gower, J. C. 1977. The analysis of asymmetry and orthogonality, p. 109–123. In: J. Barra et al. [eds.] Recent developments in statistics. North Holland. Amsterdam.Google Scholar
  17. Gower, J. C. 1980. Problems in interpreting asymmetrical chemical relationships. p. 399–409. In F. Bisby, J. C. Vaughan and C. A. Wright [eds.] Chemosystematics: principles and practice. Academic Press. New York.Google Scholar
  18. Gower, J. C. 1984a. Multivariate Analysis: ordination multidimensonal scaling and allied topics, p. 727–781. In E. H. Lloyd [ed.] Handbook of applicable mathematics Vol. V I: Statistics. J. Wiley and Sons. Chichester.Google Scholar
  19. Gower, J. C. 1984b. Multidimensional scaling displays, p. 592–601. In H. G. Law, C. W. Snyder, J. Mattie and R. P. McDonald [eds.] Research methods formulti-mode data analysis. Praeger. New York.Google Scholar
  20. Gower, J.C., and P. Legendre. 1986. Metric and Euclidean properties of dissimilarity coefficients. J. of Classification 3: 5–48.CrossRefGoogle Scholar
  21. Green, P.J. 1981. Peeling bivariate data. p. 3-19. In V. Barnett [ed.] Interpreting multivariate data. J. Wiley and Sons. Chichester.Google Scholar
  22. Greenacre, M. J. 1984. Theory and applications of correspondence analysis. Academic Press. London.Google Scholar
  23. Guttman, L. A. 1968. A general non-metric technique for finding the smallest coordinate space for a configuration of points. Psychometrika 33: 469–506.CrossRefGoogle Scholar
  24. Healy, M. J. R., and H. Goldstein. 1976. An approach to the scaling of categorised attributes. Biometrika 63: 219–229.CrossRefGoogle Scholar
  25. Heiser, W., and J. de Leeuw. 1979. How to use SMACOF-1. A program for metric multidimensional scaling, p. 1-63. Department of Datatheory. Faculty of Social Sciences, University of Leiden, Middelstegracht 14, 2312 TW Leiden, The Netherlands.Google Scholar
  26. Hill, M. O., and H. G. Gauch. 1980. Detrended correspondence analysis, an improved ordination technqiue. Vegetatio 42: 47–58.CrossRefGoogle Scholar
  27. Kruskal, J.B., and M. Wish. 1978. Multidimensional scaling. Sage University papers on quantitative applications in the social sciences. Series No. 07 - 911, Sage Publications. Beverley Hills and London.Google Scholar
  28. Law, H. G., Snyder, C. W. Jr., J. A. Hattie, and R. P. McDonald. 1984. Research methods for multimode data analysis. Praeger. New York.Google Scholar
  29. Lebart, L., A. Morineau, and K. M. Warwick. 1984. Multivariate descriptive statistical analysis. J.Wiley & Sons. New York.Google Scholar
  30. de Leeuw, J. 1984. The Gifi system of non-linear multivariate analysis. In E. Diday et al. [ed.] Data analysis and informatics I V, North Holland. Amsterdam.Google Scholar
  31. Legendre, L., and P. Legendre. 1983. Numerical ecology. Elsevier Scientific Publishing Co. Amsterdam.Google Scholar
  32. Lowe, H. J. B. 1984. The assessment of populations of the aphid Sitobion a venae in field trials. Journal of Agricultural Science 102: 487–497.CrossRefGoogle Scholar
  33. Sammon, J. W. 1969. A non-linear mapping for data structure analysis, I.E.E.E. Transactions on Computers 18: 401–409.Google Scholar
  34. Shepard, R.N., and J. D. Carroll. 1966. Parametric representation of non-linear data structures, p. 561–592. In P. R. Krishnaiah [ed.]. Multivariate analysis. Academic Press. New York.Google Scholar
  35. Schonemann, P. H., and R. M. Carroll. 1970. Fitting one matrix to another under choices of a central dilation and a rigid motion. Psychometrika 35: 245–255.CrossRefGoogle Scholar
  36. Sibson, R. 1979. Studies in the robustness of multidimensional scaling: purturbational analysis of classical scaling. J. Roy. Statist. Soc. B 41: 217–229.Google Scholar
  37. Silverman, R. W., and D. M. Titterington. 1980. Minimum covering ellipses. SIAM J. on Scientific and Statistical Computing 1: 401–409.CrossRefGoogle Scholar
  38. Takane, Y., F. Young, and J. de Leeuw. 1977. Nonmetric individual differences scaling: an alternating least squares method with optimal scaling features. Psychometrika 42: 7–68.Google Scholar
  39. Yarranton, G. A. 1966. A plotles method of sampling vegetation. Journal of Ecology 54: 229–237.CrossRefGoogle Scholar
  40. Williamson, M. H. 1978. The ordination of incidence data. Journal of Ecology 66: 911–920.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • John C. Gower
    • 1
  1. 1.Rothamsted Experimental StationHarpenden, HertsUK

Personalised recommendations