Comparative Neuroanatomy and the Evolution of Intelligence

  • William Hodos
Part of the NATO ASI Series book series (volume 17)


The search for the biological determiners of animal intelligence often has focused on the size of the brain as a fundamental feature from which intelligence may be deduced. This search has been based on certain assumptions about the nature of brain organization and the nature of intelligence. I believe that these assumptions require re-evaluation in the light of data from comparative neuroanatomy and theories of intelligence. My hope is that such a re-evaluation may lead us in the direction of a better understanding of the relationship between brain and intelligence even though that road may be less direct and more rocky than we would like.


Brain Size Optic Tectum General Intelligence Human Intelligence Animal Cognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariens Kappers CU, Huber, GC, Crosby E (1936) The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. Macmillan New YorkGoogle Scholar
  2. Bauchot R, Stephan H (1966) Donnees nouvelles sur Tencephalisation des Insectivores et des Prosimians. Mammalia 30: 160–196CrossRefGoogle Scholar
  3. Bitterman ME (1965a) The evolution of intelligence. Scientific American 212: 92–100PubMedCrossRefGoogle Scholar
  4. Bitterman ME (1965b) Phyletic differences in learning. American Psychologist 20: 394–410CrossRefGoogle Scholar
  5. Bitterman ME, Woodward WT (1976) Vertebrate learning: common processes. In: Master- ton RB, Bitterman ME Campbell CBG Hotton N (eds.) Evolution of Brain and Behavior in Vertebrates. Erlbaum HillsdaleGoogle Scholar
  6. Brookshire KH (1976) Divergences in learning. In: Masterton RB, Bitterman ME, Campbell CBG Hotton N (eds.) Evolution of Brain and Behavior in Vertebrates. Erlbaum HillsdaleGoogle Scholar
  7. Carlson NR (1980) Physiology of Behavior. Allyn and Bacon BostonGoogle Scholar
  8. Cronbach LJ (1960) Essentials of Psychological Testing. Harper New YorkGoogle Scholar
  9. Demski LS (1984) The evolution of the neuroanatomical substrates of reproductive behavior: Sex steroid and LHRH-specific pathways including the terminal nerve. American Zoologist 24: 809–830Google Scholar
  10. Dubois E (1897) Sur le rapport du poids de Tencephale avec le grandeur du corps chez mammiferes. Bulletins de Societe d’Anthropologie de Paris. 8: 337–376CrossRefGoogle Scholar
  11. Goldberg ME, Robinson DM (1978) Visual system: superior colliculus. In: Masterton RB (ed.) Handbook of Behavioral Neurobiology. Plenum New YorkGoogle Scholar
  12. Gould SJ (1981) The Mismeasure of Man. Norton New YorkGoogle Scholar
  13. Griffin DR (ed.) (1982) Animal Mind - Human Mind. Springer BerlinCrossRefGoogle Scholar
  14. Guthrie, DM (1980.) Neuroethology. Wiley New YorkGoogle Scholar
  15. Hartline PH (1985) Multimodal integration in the brain: combining dissimilar views of the world. In: Cohen MJ, Strumwasser F (eds.) Comparative Neurobiology. Wiley New YorkGoogle Scholar
  16. Herrnstein RJ (1985) Riddles of natural categorization. Philosophical Transactions of the Royal Society (London) B308: 129–144CrossRefGoogle Scholar
  17. Hodos W (1982) Some perspectives on the evolution of intelligence and the brain. In: D. R. Griffin (ed.) Animal Mind - Human Mind. Springer BerlinGoogle Scholar
  18. Hollard VD, Delius JD (1982) Rotational invariance in visual pattern recognition by pigeons and humans. Science 218: 804–806PubMedCrossRefGoogle Scholar
  19. Horn JL (1985) Remodeling old models of intelligence. In: Wolman B (ed.) Handbook of Intelligence. Wiley New YorkGoogle Scholar
  20. Hulse SH, Fowler H, Honig WK (1978) Cognitive Processes in Animal Behavior. Erlbaum HillsdaleGoogle Scholar
  21. Humphreys LG (1985) General intelligence. In: Wolman B. (ed.) Handbook of Intelligence. Wiley New YorkGoogle Scholar
  22. Jerison HJ (1955) Brain to body ratios and the evolution of intelligence. Science 121: 447–449PubMedCrossRefGoogle Scholar
  23. Jerison HJ (1970) Brain evolution: New light on old principles. Science 170: 1224–1225PubMedCrossRefGoogle Scholar
  24. Jerison HJ (1973) Evolution of the Brain and Intelligence. Academic Press New YorkGoogle Scholar
  25. Jerison HJ (1982) The evolution of biological intelligence. In: Sternberg RJ (ed.) Handbook of Human Intelligence. Cambridge University Press CambridgeGoogle Scholar
  26. Jerison HJ (1985) Animal intelligence as encephalization. Philosophical Transaction of the Royal Society (London) B308: 21–35CrossRefGoogle Scholar
  27. Karten HJ (1969) The organization of the avian telencephalon and some speculations on the organization of the amniote telencephalon. Annals of the New York Academy of Sciences 167: 164–179CrossRefGoogle Scholar
  28. Knudsen EI (1982) Auditory and visual maps of space in the optic tectum of the owl. Journal of Neuroscience 2: 1177–1194PubMedGoogle Scholar
  29. Macphail EM (1982) Brain and Intelligence in Vertebrates. Clarendon Press OxfordGoogle Scholar
  30. Marquis DG (1935) Phylogenetic interpretation of the functions of the visual cortex. Archives of Neurology and Psychiatry 33: 807–815Google Scholar
  31. Marsh, OC (1886) Dinocerata. U.S. Geological Survey Monograph 10: 1–243Google Scholar
  32. McFarland D (1985) Animal Behavior. Benjamin/Cummings Menlo ParkGoogle Scholar
  33. Mellgren RL (1983) Animal Cognition and Behavior. North-Holland AmsterdamGoogle Scholar
  34. Milner B, Corkin S, Teuber H-L (1968) Further analysis of hippocampal amnesic syndrome: 14 year follow-up study of H. M. Neuropsychologia, 6: 215–234CrossRefGoogle Scholar
  35. Mishkin M (1982) A memory system in the monkey. Philosophical Transactions of the Royal Society (London), B298: 85–95CrossRefGoogle Scholar
  36. Morita Y, Finger T (1985) Topographic and laminar organization of the vagal gustatory system in the goldfish, Carassius auratus. Journal of Comparative Neurology, 238: 187–201PubMedCrossRefGoogle Scholar
  37. Nauta WJH, Feirtag M (1986) Fundamental Neuroanatomy. Freeman New YorkGoogle Scholar
  38. Nauta WHJ, Karten HJ (1970) A general profile of the vertebrate brain, with sidelights on the ancestry of the cerebral cortex. In: Schmitt FO (ed.) The Neuro- sciences: Second Study Program. Rockefeller University Press New YorkGoogle Scholar
  39. Nieuwenhuys R, Nichols C (1969) A survey of the general morphology, the fiber connections, and the possible functional significance of the gigantocerebellum of mormyrid fishes. In: Llinas R (ed. ), Neurobiology of Cerebellar Evolution and Development. American Medical Association ChicagoGoogle Scholar
  40. Noback CR, Moskowitz N (1962) Structural and functional correlates of “encephalization” in the primate brain. Annals of the New York Academy of Sciences, 102:210– 218Google Scholar
  41. Northcutt RG (1981) Evolution of the telencephalon in nonmammals. Annual Review of Neuroscience, 4: 301–350PubMedCrossRefGoogle Scholar
  42. Northcutt RG (1984) Evolution of vertebrate central nervous system: Patterns and Processes. American Zoologist, 24: 701–716Google Scholar
  43. Northcutt RG (1985) Brain phylogeny: Speculations on Pattern and Cause. In: Cohen MJ, Strumwasser F (eds.), Comparative Neurobiology. Wiley New YorkGoogle Scholar
  44. Olton DS (1984) Working memory and serial patterns. In: Roitblat HL, Bever TE, Terrace HS (eds.) Animal Cognition. Erlbaum HillsdaleGoogle Scholar
  45. Passingham RE (1975) Changes in the size and organization of the brain in man and his ancestors. Brain, Behavior and Evolution, 11: 73–90PubMedCrossRefGoogle Scholar
  46. Passingham RE (1979) Brain size and intelligence in man. Brain, Behavior and Evolution, 16: 253–270PubMedCrossRefGoogle Scholar
  47. Passingham RE (1982.) The Human Primate. Freeman OxfordGoogle Scholar
  48. Passingham RE, Etlinger G (1974) A comparison of cortical functions in man and other primates. International Review of Neurobiology, 16: 233–299PubMedCrossRefGoogle Scholar
  49. Radinsky L (1968) Evolution of somatic sensory specialization in otter brains. Journal of Comparative Neurology, 134: 495–505PubMedCrossRefGoogle Scholar
  50. 50.Radinsky L (1975) Primate brain evolution. American Scientist, 63:656– 663Google Scholar
  51. Roitblat HL, Bever TG, Terrace HS (eds.) (1984) Animal Cognition. Erlbaum HillsdaleGoogle Scholar
  52. Sacher GA (1970) Allometric and factorial analyses of brain structure in insectivores and primates. In: Noback CR, Montagna W (eds.) The Primate Brain. Appleton New YorkGoogle Scholar
  53. Slotnick BM, Katz HM (1974) Olfactory learning-set formation in rats. Science, 185: 796–798PubMedCrossRefGoogle Scholar
  54. Steele Russell I ( 1979. ) Brain size and intelligence: a comparative perspective. In: Oakley DA, Plotkin HC (eds.) Brain, Behaviour and Evolution. Methuen LondonGoogle Scholar
  55. Sternberg, RJ (1985a) Human intelligence: The model is the message. Science, 230: 1111–1118.PubMedCrossRefGoogle Scholar
  56. Sternberg RJ (1985b) Cognitive approaches to intelligence. In: Wolman B (ed.), Handbook of Intelligence. Wiley New YorkGoogle Scholar
  57. Van Valen L (1974) Brain size and intelligence in man. American Journal of Physical Anthropology, 40: 417–424PubMedCrossRefGoogle Scholar
  58. Weiskrantz L (1961) Encephalisation and the scotoma. In: Thorpe WH, Zangwill OL (eds.) Current Problems in Animal Behaviour. Cambridge University Press CambridgeGoogle Scholar
  59. Welker WI, Campos GB (1963) Physiological significance of sulci in somatic sensory cortex in mammals of the family Procyonidae. Journal of Comparative Neurology, 120: 19–36PubMedCrossRefGoogle Scholar
  60. Welker WI, Seidenstein SS (1959) Somatic sensory representation in the cerebral cortex of the raccoon (Procyon lotor). Journal of Comparative Neurology, 111: 469–501PubMedCrossRefGoogle Scholar
  61. Wolman B (ed.)(1985) Handbook of Intelligence. Wiley New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • William Hodos
    • 1
  1. 1.Department of PsychologyUniversity of MarylandCollege ParkUSA

Personalised recommendations