Skip to main content

Vertebrate-Invertebrate Comparisons

  • Conference paper

Part of the book series: NATO ASI Series ((ASIG,volume 17))

Abstract

Given the wider province of this symposium, I should say at once that my concern here is only with (non-human) animals, and not with intelligence in general but only with learning, which students of animal intelligence have taken to be its fundamental component and to the analysis of which their experiments have been directed almost exclusively since the turn of the century. As to whether anything like creative as distinct from purely reproductive intelligence need be attributed to their animals, there was substantial disagreement among early investigators; the influential Thorndike (1911), for one, thought not. Experienced subjects, especially primates, sometimes solved problems in ways that suggested “observation of essential features or relations” rather than “random actions and the selection of profitable acts” (Yerkes 1927, pp. 277–278), which alone did not require the assumption of more advanced capabilities or provide any satisfactory indication of what they might be. Clearly prerequisite to such solutions, however, was the long exercise of reproductive intelligence, and that, it soon became evident, was where the analysis should begin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson CI (1986) Aversive conditioning in honeybees (Apis mellifera). J Comp Psychol 100: 106–116

    Article  Google Scholar 

  • Abramson CI, Bitterman ME (1986a) Latent inhibition in honeybees. Anim Learn Behav 14: 184–189

    Article  Google Scholar 

  • Abramson CI, Bitterman ME (1986b) The US-preexposure effect in honeybees. Anim Learn Behav 14: 374–379

    Article  Google Scholar 

  • Alkon DL, Farley J (eds) (1984) Primary neural substrates of learning and behavioral change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ammon D, Abramson CI, Bitterman ME (1986) Partial reinforcement and resistance to extinction in honeybees. Anim Learn Behav 14: 232–240

    Article  Google Scholar 

  • Amsel A (1962) Frustrative nonreward in partial reinforcement and discrimination learning. Psychol Rev 69: 306–328

    Article  PubMed  CAS  Google Scholar 

  • Behrend ER, Bitterman ME (1961) Probability-matching in the fish. Amer J Psychol 74: 542–551

    Article  Google Scholar 

  • Bitterman ME (1967) Learning in animals. In: Helson H, Bevan W (eds) Contemporary approaches to psychology. Van Nostrand, New York, p 139

    Google Scholar 

  • Bitterman ME (1975a) The comparative analysis of learning. Science 188: 699–709.

    Article  PubMed  CAS  Google Scholar 

  • Bitterman ME (1975b) Critical commentary. In: Corning WC, Dyal JA, Willows, AOD (eds) Invertebrate Learning, vol 3. Plenum, New York, p 139

    Google Scholar 

  • Bitterman ME (1984a) Migration and learning in fishes. In: McCleave JD, Arnold, GP, Dodson, JJ, Neill, WH (eds) Mechanisms of migration in fishes. Plenum, New York, p 397.

    Google Scholar 

  • Bitterman ME (1984b) Learning in man and other animals. In: Sarris V, Parducci, A (eds) Perspectives in psychological experimentation. Lawrence Erlbaum, Hillsdale, New Jersey, p 59

    Google Scholar 

  • Bitterman ME, Woodard WT (1976) Vertebrate learning: Common processes. In: Masterton, RB, Bitterman, ME, Campbell CBG, Hotton N (eds) Evolution of brain and behavior in vertebrates. Lawrence Erlbaum, Hillsdale, New Jersey, p 169.

    Google Scholar 

  • Bitterman ME, Menzel R, Fietz A, Schafer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97: 107–119

    Article  PubMed  CAS  Google Scholar 

  • Bouton, ME, Jones DL, McPhillips, SA, Swartzentruber, D (1986) Potentiation and overshadowing in aversion learning: Role of method of odor presentation, the distal-proximal cue distinction, and the conditionability of odor. Learn. Motiv. 17: 115–138

    Google Scholar 

  • Brown PL, Jenkins, HM (1969) Autoshaping of the pigeon’s key-peck. J Exp Anal Behav 11: 1–8

    Article  Google Scholar 

  • Bullock DH, Bitterman ME (1962) Probability-matching in the pigeon. Amer J Psychol 75: 634–639

    Article  PubMed  CAS  Google Scholar 

  • Carew TJ, Sahley CL (1986) Invertebrate learning and memory: From behavior to molecules. Ann Rev Neurosci 9: 435–488

    Google Scholar 

  • Corning WC, Dyal JA, Willows AOD (eds) ( 1973, 1975) Invertebrate learning, vols 1–3. Plenum, New York

    Google Scholar 

  • Couvillon PA, Bitterman ME (1980). Some phenomena of associative learning in honeybees. J Comp Physiol Psychol 94: 878–885.

    Article  Google Scholar 

  • Couvillon PA, Bitterman ME (1982). Compound conditioning in honeybees. J Comp Physiol Psychol 96: 192–199

    Article  Google Scholar 

  • Couvillon PA, Bitterman ME (1984) The overlearning-extinction effect and successive negative contrast in honeybees. J Comp Psychol 98: 100–109

    Article  PubMed  CAS  Google Scholar 

  • Couvillon PA, Bitterman ME (1985a) Analysis of choice in honeybees. Anim Learn Behav 13: 246–252

    Article  Google Scholar 

  • Couvillon PA, Bitterman ME (1985b) Effect of experience with a preferred food on consummatory responding for a less preferred food in goldfish. Anim Learn Behav 13: 433–438

    Article  Google Scholar 

  • Couvillon PA, Bitterman ME (1986) Performance of honeybees in reversal and ambiguous-cue problems: Tests of a choice model. Anim Learn Behav 14: 225–231

    Google Scholar 

  • Couvillon, PA, Bitterman ME (1987) Discrimination of color-odor compounds by honeybees: Tests of a continuity model. Anim Learn Behav 15: 218–227

    Google Scholar 

  • Couvillon PA, Klosterhalfen S, Bitterman ME (1983). Analysis of overshadowing in honeybees. J Comp Psychol 97: 154–166

    Article  Google Scholar 

  • Dickinson A, Nicholas DJ, Mackintosh NJ (1983) A re-examination of one-trial blocking in conditioned suppression. Q J Exp Psychol 35: 67–79

    Google Scholar 

  • Dufort RM, Guttman N, Kimble, GA (1954) One-trial discrimination reversal in the white rat. J Comp Physiol Psychol 47: 248–247

    Article  PubMed  CAS  Google Scholar 

  • Dumont JPC, Robertson RM (1986) Neuronal circuits: An evolutionary perspective. Science 233: 849–853

    Google Scholar 

  • Durlach PJ, Rescorla RA (1980) Potentiation rather than overshadowing in flavor aversion learning. J Exp P: Anim Behav Proc 6: 175–187

    Google Scholar 

  • Flaherty CF (1982) Incentive contrast: A review of behavioral changes following shifts in reward. Anim Learn Behav 10: 409–440

    Article  Google Scholar 

  • Flaherty, CF, Becker HC, Checke S (1983) Repeated successive contrast in consummatory behavior with repeated shifts in sucrose concentration. Anim Learn Behav 11: 407–414

    Article  Google Scholar 

  • Frisch K von (1914) Der Farbensinn und Formensinn der Biene. Zool Jahrb 35: 1–188

    Google Scholar 

  • Gould SJ (1982) Darwinism and the expansion of evolutionary theory. Science 216: 380–387

    Article  PubMed  CAS  Google Scholar 

  • Grau JW, Rescorla RA (1984) Role of context in autoshaping. J Exp Psychol: Anim Behav Proc 10: 324–332

    Google Scholar 

  • Grossmann KE (1973) Continuous, fixed-ratio, and fixed-interval reinforcement in honey bees. J Exp Anal Behav 20: 105–109

    Article  PubMed  CAS  Google Scholar 

  • Henderson TB, Woodard WT, Bitterman ME (1975) Measurement of consummatory behavior in octopuses. Behav Res Meth Instr 7: 265–266

    Article  Google Scholar 

  • Holland PC (1979) Effects of omission contingencies on various components of Pavlovian conditioned responding in rats. J Exp Psychol: Anim Behav Proc 5: 178–193

    Article  CAS  Google Scholar 

  • Holmes NK, Bitterman ME (1969) Measurement of consummatory behavior in the fish. J Exp Anal Behav 12: 39–41.

    Article  PubMed  CAS  Google Scholar 

  • Ison JR, Cook PE (1964) Extinction performance as a function of incentive magnitude and number of acquisition trials. Psychon Sci 1: 245–246

    Google Scholar 

  • Kamin LJ (1969) ‘Attention-like’ processes in classical conditioning. In: Jones MR (ed) Miami symposium on the prediction of behavior: Aversive stimulation. University of Miami Press, Miami, p 9

    Google Scholar 

  • Kirk KL, Bitterman ME (1965) Probability-learning by the turtle. Science 148: 1484–1485

    Article  PubMed  CAS  Google Scholar 

  • Kremer EF (1972) Properties of a preexposed stimulus. Psychon Sci 27: 45–47

    Google Scholar 

  • Kuwabara M (1957) Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifera. J Fac Sci Hokkaido Univ (Zool) 13: 458–464

    Google Scholar 

  • Longo N (1964) Probability-learning and habit-reversal in the cockroach. Amer J. Psychol 77: 49–51

    Article  Google Scholar 

  • Lubow RE (1973) Latent inhibition. Psychol Bull 79: 398–407

    Article  PubMed  CAS  Google Scholar 

  • Mackintosh NJ (1983) Conditioning and associative learning. Clarendon Press, Oxford

    Google Scholar 

  • Menzel R (1983) Neurobiology of learning and memory: The honeybee as a model system. Naturwiss 70: 504–511

    Article  PubMed  CAS  Google Scholar 

  • Menzel R., Bitterman ME (1983) Learning by honeybees in an unnatural situation. In Huber F, Markl L (eds) Behavioral physiology and neuroethology. Springer, Heidelberg, p 206

    Google Scholar 

  • Menzel R, Erber J (1978) Learning and memory in bees. Sci Amer 239: 102–110

    Article  Google Scholar 

  • Mobbs PG (1982) The brain of the honeybee, Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Phil Trans Roy Soc Lond (B) 298: 309–354

    Article  Google Scholar 

  • North AJ, Stimmel DT (1960) Extinction of an instrumental response following a large number of reinforcements. Psychol Rep 6: 227–234

    Google Scholar 

  • Pantin CFA (1951) Organic design. Adv Sci 8: 138–150

    Google Scholar 

  • Pavlov IP (1927) Conditioned reflexes. Oxford University Press, Oxford

    Google Scholar 

  • Perin CT (1942) Behavior potentiality as a joint function of the amount of training and the degree of hunger at the time of extinction. J Exp Psychol 30: 93–113

    Article  Google Scholar 

  • Pert A, Bitterman ME (1969) A technique for the study of consummatory behavior and instrumental conditioning in the turtle. Amer Psychol 24: 258–261

    Article  Google Scholar 

  • Randich A, LoLordo VM (1979) Associative and nonassociative theories of the UCS pre-exposure phenomenon: Implications for Pavlovian conditioning. Psychol Bull 86: 523–548

    Google Scholar 

  • Randich A, Ross RT (1984) Mechanisms of blocking by contextual stimuli. Learn Motiv 15: 106–117

    Article  Google Scholar 

  • Reiss S, Wagner, AR (1972) CS habituation produces a “latent inhibition effect” but no active “conditioned inhibition.” Learn Motiv 3: 237–245

    Google Scholar 

  • Rescorla RA (1977) In: Davis H, Hurwitz HMB (eds) Operant-Pavlovian interactions. Lawrence Erlbaum, Hillsdale, New Jersey, p 133

    Google Scholar 

  • Rescorla RA, Cunningham CL (1978) Within-compound flavor associations. J Exp Psychol: Anim Behav Proc 4: 267–275

    Google Scholar 

  • Rescorla RA, Durlach, PJ (1981) Within-event learning in Pavlovian conditioning. In: Spear, NE, Miller, RR (eds) Information processing in animals: Memory mechanisms. Lawrence Erlbaum, Hillsdale, New Jersey, p 81

    Google Scholar 

  • Sahley CL (1984) Behavior theory and invertebrate learning. In: Marler P, Terrace HS (eds) The biology of learning. Springer, Berlin, p 181

    Google Scholar 

  • Sahley CL, Rudy JW, Gelperin A (1984) Associative learning in a mollusk: A comparative analysis. In: Alkon DL, Farley J (eds) Primary neural substrates of learning and behavioral change. Cambridge University Press, Cambridge, p 243

    Google Scholar 

  • Sanders GD (1975) The cephalopods. In: Corning WC, Dyal JA, Willows AOD (eds), Invertebrate Learning, vol 3. Plenum, New York, p 1

    Google Scholar 

  • Sheffield FD (1965) Relation between classical conditioning and instrumental learning. In: Prokasy WF (ed) Classical conditioning: A symposium. Appleton-Century-Crofts, New York, p 302

    Google Scholar 

  • Shinoda A, Bitterman ME (1987) Analysis of the overlearning-extinction effect in honeybees. Anim Learn Behav 15: 93–96

    Article  Google Scholar 

  • Sidman M (1953) Avoidance conditioning with brief shock and no exteroceptive warning signal. Science 118: 157–158

    Article  PubMed  CAS  Google Scholar 

  • Sigurdson JE (1981a) Automated discrete-trials techniques of appetitive conditioning in honey bees. Behav Res Meth Instr 13: 1–10

    Article  Google Scholar 

  • Sigurdson JE (1981b) Measurement of consummatory behavior in honeybees. Behav Res Meth Instr 13: 308–310

    Article  Google Scholar 

  • Simpson GG (1964) Organisms and molecules in evolution. Science 146: 1535–1538

    Article  PubMed  CAS  Google Scholar 

  • Skinner BF (1938) The behavior of organisms. Appleton-Century-Crofts, New York

    Google Scholar 

  • Sutherland NS, Mackintosh NJ (1971) Mechanisms of animal discrimination learning. Academic Press, New York

    Google Scholar 

  • Tennant WA, Bitterman ME (1975) Blocking and overshadowing in two species of fish. J Exp Psychol: Anim Behav Proc 1: 22–29

    Google Scholar 

  • Terrace HS (1984) Animal learning, ethology, and biological constraints. In: Marler P, Terrace HS (eds) The biology of learning. Springer, Berlin, p 15

    Google Scholar 

  • Thorndike EL (1911) Animal intelligence. Macmillan, New York

    Google Scholar 

  • Tolman EC (1932) Purposive behavior in animals and men. Century, New York

    Google Scholar 

  • Wagner, AR, Logan FA, Haberlandt, K, Price T (1968) Stimulus selection in animal discrimination learning. J Exp Psychol 76: 171–180

    Article  PubMed  CAS  Google Scholar 

  • Walker JJ, Longo N, Bitterman ME (1970) The octopus in the laboratory: Handling, maintenance, training. Behav Res Meth Instr 2: 15–18

    Google Scholar 

  • Weisman RG, Litner JS (1969) Positive conditioned reinforcement of Sidman avoidance behavior in rats. J Comp Physiol Psychol 68: 597–603

    Article  Google Scholar 

  • Wells PH (1973) Honey bees. In: Corning WC, Dyal JA, Willows AOD (eds) Invertebrate learning, vol 2. Plenum, New York, p 173

    Google Scholar 

  • Woodard WT, Ballinger JC, Bitterman ME (1974) Autoshaping: Further study of “negative automaintenance.” J Exp Anal Behav 22: 47–51

    CAS  Google Scholar 

  • Yerkes RM (1927) The mind of a gorilla. Genet Psychol Monogr 2: 1–193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bitterman, M.E. (1988). Vertebrate-Invertebrate Comparisons. In: Jerison, H.J., Jerison, I. (eds) Intelligence and Evolutionary Biology. NATO ASI Series, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70877-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70877-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70879-4

  • Online ISBN: 978-3-642-70877-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics