Skip to main content

Ethylene — A Possible Factor in the Response of Plants to Air Pollution and Acid Precipitation

  • Conference paper
Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems

Part of the book series: NATO ASI Series ((ASIG,volume 16))

Abstract

Ethylene is a ubiquitous component of urban and rural air at concentrations varying from 0.6 μg.m−3 to over 8000 μg.m−3. Rural levels are usually below 14 μg.m−3 but as one approaches burning Vegetation, automobile exhaust, and city and industrial areas, levels rise rapidly. Levels of over 120 μg.m−3 have been often reported in such areas.

Since ethylene is also a naturally produced plant growth hormone, as well as an air pollutant of anthropogenic origin, there is a possibility that unnaturally high concentrations of gas will interfere with normal growth and development. Low levels of ethylene (well below 120 μg.m−3) have been shown to cause stem dwarfing, slow leaf expansion, increased epinasty, leaf curling, promote premature chlorosis, senescence and abscission, and interfere with flowering and various processes concerned with seed and bud dormancy.

Many common environmental stresses such as SO2, O3, heavy metal toxicity, cold, drought, flooding, wind, and UV irradiation have been shown to stimulate endogenous ethylene biosynthesis. Perhaps such stress-induced increases in ethylene might act additively with ethylene from anthropogenic sources to produce some of the symptoms seen in forests subjected to acid precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles FB (1973) Ethylene in plant biology. Academic Press, New York Abeles FB (1982) Ethylene as an air pollutant. Agric For Bull of University of Alberta 5(1): 4–12

    Google Scholar 

  • Abeles FB, Forrence LE (1970) Temporal and hormonal control of β-1, 3-glucanase in Phaseolus vulgaris L. Plant Physiol 45: 395–400

    Article  PubMed  CAS  Google Scholar 

  • Abeles FB, Heggestad ME (1973) Ethylene: an urban air pollutant. J Air Pollut Contr Assoc 23: 517–521

    CAS  Google Scholar 

  • Abeles FB, Craker LE, Forrence LE, Leather GR (1971) Fate of air pollutants: removal of ethylene, sulphur dioxide and nitrogen dioxide by soil. Science 173: 914–916

    Article  PubMed  CAS  Google Scholar 

  • Addicott FT (1982) Abscission. Univ of Calif Press, Berkeley

    Google Scholar 

  • Altshuller AP, Bellar TA (1963) Gas Chromatographie analysis of hydrocarbons in the Los Angeles Atmosphere. J Air Pollut Contr Assoc 13(2): 81

    CAS  Google Scholar 

  • Arny CJ, Pell EJ (1985) Ethylene produetion by potato, radish and soybean leaf tissue treated with simulated acid rain. Enviro and Expt Bot 26: 9–15

    Article  Google Scholar 

  • Barnett JP (1983) Ethylene: a problem in seedling storage. Tree Planter’s Notes. Winter: 28–29

    Google Scholar 

  • Beyer EM Jr (1979) Effect of silver ion, carbon dioxide, and oxygen on ethylene action and metabolism. Plant Physiol 63: 169–173

    Article  PubMed  CAS  Google Scholar 

  • Blake TJ, Reid DM (1981) Ethylene, water relations and tolerance to waterlogging of three eucalyptus species. Aust J Plant Physiol 8: 497–505

    Article  CAS  Google Scholar 

  • Blake TJ, Reid DM, Rood SB (1983) Ethylene, indole acetic acid and apical dominance in peas: a reappraisal. Physiol Plant 59: 481–487

    Article  CAS  Google Scholar 

  • Browning G (1974) 2-chloroethane phosphoric acid reduces transpiration and stomatal opening in Coffea arabica L. Planta (Berl) 121: 175–179

    Article  CAS  Google Scholar 

  • Buchanan DW, Briggs RH (1969) Peach fruit abscission and pollen germination as influenced by ethylene and 2-chlorethane phosphoric acid. J Amer Soc Hort Sci 94: 327–329

    CAS  Google Scholar 

  • Burg SP, Apelbaum A, Eisinger WR, Kang BG (1971) Physiology and mode of action of ethylene. Hort Sci 6: 359–364

    CAS  Google Scholar 

  • Burg SP, Burg EA (1967) Molecular requirements for the biological activity of ethylene. Plant Physiol 42: 144–152

    Article  PubMed  CAS  Google Scholar 

  • Chalmers, DJ, Faragher JD (1977) Regulation of anthoeyanin synthesis in apple skin. II Involvement of ethylene. Aust J Plant Physiol 4: 123–131

    Article  CAS  Google Scholar 

  • Christoffersen RE, Laties GG (1982) Ethylene regulation of gene expression in carrots. Proc Natl Acad Sci USA 79: 4060–4063

    Article  PubMed  CAS  Google Scholar 

  • Clifford PE, Reid DM, Pharis RP (1983) Endogenous ethylene does not initiate but may modify geobending - a role for ethylene in autotropism. Plant Cell Environ 6: 433–436

    Article  CAS  Google Scholar 

  • Crocker W, Hitchcock AE, Zimmerman PW (1935) Similarities in the effects of ethylene and the plant auxins. Contrib Boyce Thomp Inst 7: 231–248

    CAS  Google Scholar 

  • Crocker W, Zimmerman PW, Hitchcock AE (1932) Ethylene-induced epinasty of leaves and the relation of gravity to it. Contrib Boyce Thomp Inst 4: 177–218

    CAS  Google Scholar 

  • Drakeford DR, Reid DM (1984) Changes in the ability of plants to alter the pH of the flooding medium as an early Symptom of flooding stress in Helianthus annuus. Can J Bot 62: 2417–2422

    Article  Google Scholar 

  • Eisinger W (1983) Regulation of pea internode expansion by ethylene. Ann Rev Plant Physiol 34: 225–240

    Article  CAS  Google Scholar 

  • Elstner EF, Konze JR (1976) Effect of point freezing on ethylene and ethane production by sugar beet leaf discs. Nature 263: 351–352

    Article  CAS  Google Scholar 

  • Evans DL, Bengochea T, Cairns AJ, Dodds JH, Hall MA (1982) Studies on ethylene binding by cell-free preparations from cotyledons of Phaseolus vulgaris L. subcellular localization. Plant Cell Enviro 5: 101–107

    CAS  Google Scholar 

  • Fabijan D, Taylor JS, Reid DM (1981) Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. II Action of gibberellins, cytokinins, auxins and ethylene. Physiol Plant 53: 589–597

    Article  CAS  Google Scholar 

  • Fluckiger W, Oretli JJ, Fluckiger-Keller H, Braun S (1979) Premature senescence in plants along a motorway. Environ Pollut 20(3): 171–176

    Article  Google Scholar 

  • Frey-Wyssling A (1976) The Plant Cell Wall. Borntraeger, Berlin

    Google Scholar 

  • Fukuchi T, Yamamoto T (1969) J Pollut Control 5: 17 (cited in Abeles 1973)

    Google Scholar 

  • Gane R (1934) Nature (Lond) 134: 1008

    Article  CAS  Google Scholar 

  • Girardin JPL (1964) Jahresber Agrikult-Chem Versuchssta Berlin 7: 199 (cited in Abeles 1973)

    Google Scholar 

  • Goeschl JD, Rappaport L, Pratt HK (1966) Ethylene as a factor regulating the growth of pea epicotyls subjected to physical stress. Plant Physiol 41: 877–884

    Article  PubMed  CAS  Google Scholar 

  • Gordon SJ, Meeks SA (1977) A study of gaseous pollutants in the Houston, Texas area. Am Inst Chem Symp Ser 73: 84–94

    CAS  Google Scholar 

  • Hall WC, Truchelut GB, Leinweber CL, Herrero FA (1957) Ethylene production by the cotton plant and its effects under experimental and field conditions. Physiol Plant 10: 306–317

    Article  CAS  Google Scholar 

  • Hanson AD, Kende H (1976) Biosynthesis of wood ethylene in morning-glory flower tissue. Plant Physiol 57: 538–541

    Article  PubMed  CAS  Google Scholar 

  • Harbourn CL, McCambley T (1973) Proc 3rd Int Clean Air Cong. Dusseldorf (FRG) S. C38–41

    Google Scholar 

  • Harrison MA, Kaufman PB (1982) Does ethylene play a role in the release of lateral buds (tillers) from apical dominance in oats? Plant Physiol 70: 811–814

    Article  PubMed  CAS  Google Scholar 

  • Hasek RF, James HA, Sciaroni RH (1969) Ethylene - its effect on flower crops. Florists Review 144 (3721): 21, 65–68 & 78–82

    Google Scholar 

  • Heck WW (1964) Plant injury induced by photochemical reaction products of propylene-nitrogen dioxide mixtures. J Air Pollut Contr Assoc 14: 255–261

    CAS  Google Scholar 

  • Heck WW, Daines RH, Hindawi IJ (1970) Other phyotoxic pollutants. In: Recognition of air pollution injury to Vegetation. A pictorial atlas. Air Pollut Contr Assoc, Pittsburg, F1-F24

    Google Scholar 

  • Hulme AC (1970) Ed. The biochemistry of fruits and their products. vols I & II. Academic Press, New York

    Google Scholar 

  • Huxter TJ, Thorpe TA, Reid DM (1981) Shoot initiation in light-and dark-grown tobacco callus: the role of ethylene. Physiol Plant 53: 319–326

    Article  CAS  Google Scholar 

  • Huxter TJ, Reid DM, Thorpe TA (1979) Ethylene production by tobacco (Nicotiana tabacum) callus. Physiol Plant 46: 374–380

    Article  CAS  Google Scholar 

  • Jackson MB, Drew MC, Giffard SC (1981) Effects of applying ethylene to the root System of Zea mays on growth and nutrient concentration in relation to flooding tolerance. Physiol Plant 52: 23–28

    Article  CAS  Google Scholar 

  • Jaffe MJ, Biro R (1977) Thigmomorphogenesis: role of ethylene in wind induced growth retardation. Proc 4th Ann Meet Plant Growth Regul Work Group, p 118–124

    Google Scholar 

  • James HA (1963) Flower damage - a case study. Bay Area Air Pollution Control District Information Bulletin, August (cited in Hasek et al. 1969)

    Google Scholar 

  • Kang BG, Burg SP (1972) Involvement of ethylene in Phytochrome mediated carotenoid synthesis. Plant Physiol 49: 631–633

    Article  PubMed  CAS  Google Scholar 

  • Kawase M (1974) Role of ethylene in induction of flooding damage in sunflower. Physiol Plant 31: 29–38

    Article  CAS  Google Scholar 

  • Kende H, Hanson AD (1976) Relationship between ethylene evolution and senescence in morning glory flower. Plant Physiol 57: 523–527

    Article  PubMed  CAS  Google Scholar 

  • Ketring DL, Morgan PW (1969) Ethylene as a component of the emanations from germinating peanut seeds and its effect on dormant Virginia-type seeds. Plant Physiol 44: 326–330

    Article  PubMed  CAS  Google Scholar 

  • Kimball KD, Levin S (1985) Limitations of laboratory bioassays: the need for ecosystem-level testing. BioSci 35: 165–171

    Article  Google Scholar 

  • Kimmerer TW, Kozlowski TT (1982) Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiol 69: 840–847

    Article  PubMed  CAS  Google Scholar 

  • Konings H, Jackson MB (1979) A relationship between rates of ethylene production by roots and the promoting or inhibiting effects of exogenous ethylene and water on root elongation. Z Pflanzanphysiol 92: 385–397

    CAS  Google Scholar 

  • Ku HS, Suge H, Rappaport L, Pratt HK (1970) Stimulation of rice coleoptile growth by ethylene. Planta 90: 333–339

    Article  CAS  Google Scholar 

  • Land JM, Eisinger WR, Green PB (1962) Effects of ethylene on the orientation of microtubules and cellulose microfibrils of pea epicotyl cell with polylamellate cell walls. Protoplasm 110: 5–14

    Google Scholar 

  • Leopold AC, Brown KM, Emerson FH (1972) Ethylene in the wood of stressed trees. Hort Sci 7: 175

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stress. Vols I and II. Academic Press, New York, p 497 and 606

    Google Scholar 

  • Lieberman M (1979) Biosynthesis and action of ethylene. Ann Rev Plant Physiol 30: 533–591

    Article  CAS  Google Scholar 

  • Lieberman M, Kunishi AT (1972) Thoughts on the role of ethylene in plant growth and development. In: Carr DJ (ed) Plant growth substances 1970. Springer-Verlag, New York, p 549–566

    Chapter  Google Scholar 

  • MacLachlan GA (1977) Cellulose metabolism and cell growth. In: Pilet PI, Plant growth regulation. Springer-Verlag, Heidelberg, p 12–20

    Google Scholar 

  • McMichael BL, Jordan WR, Powell RD (1972) An effect of water stress on ethylene production by intact cotton petioles. Plant Physiol 49: 658–660

    Article  PubMed  CAS  Google Scholar 

  • Menzies RT, Shumate MS (1976) Remote measurements of ambient air pollutants with a bistatic laser System. Appl Optics 15: 2080–2084

    Article  CAS  Google Scholar 

  • Miller AR, Roberts LW (1982) Regulation of tracheary element differentiation by exogenous L-methionine in callus of soya bean eultivars. Ann Bot 50: 111–116

    CAS  Google Scholar 

  • Nakagaki Y, Hirai T, Stahmann MA (1970) Ethylene production by detached leaves infected with tobacco mosaic virus. Virology 40: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Neel PL, Harris RW (1972) Tree seedling growth: effects of shaking. Science 175: 918–919

    Article  PubMed  Google Scholar 

  • Neljubow D (1901) uber die horizontale nutation der Stengel von Pisum Sativum und Einiger Ander Planzen. Bech Bot Centralbl 10: 128

    Google Scholar 

  • Pallas JE Jr, Kays SJ (1982) Inhibition of photosynthesis by ethylene - a stomatal effect. Plant Physiol 70: 598–601

    Article  PubMed  CAS  Google Scholar 

  • Pegg GF (1976) The involvement of ethylene in plant pathogenesis. In: Heitefuss R, Williams PH (eds) Physiological plant pathology. Springer-Verlag, Berlin, p 582–591

    Google Scholar 

  • Pickett-Heaps JC (1967) The effect of colchine on the ultra structure of dividing cells, xylem wall differentiation, and distribution of cytoplasmic microtubules. Dev Biol 15: 206–236

    Article  CAS  Google Scholar 

  • Reid DM, Bradford KJ (1984) Effects of flooding on hormone relations. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, New York, p 195–219

    Google Scholar 

  • Reid DM, Watson K (in press) Ethylene and Plant Development. In: Tucker G, Roberts J (eds) Ethylene as an air pollutant. Proc Of Nottingham Eastern School, Butterworths, London

    Google Scholar 

  • Reid DM, Sheffer MG, Pierce RC, Bezdicek DF, Linzon SN, Reuvers T, Spencer MS, Vena F (in press) Ethylene in the environment. NRC Canada Publication No. NRCC 22496, Ottawa

    Google Scholar 

  • Rowell PL, Miller DG (1971) Induction of male sterility in wheat with 2-chlorethyl-phosphoric acid (Ethrel). Crop Sci 11: 629–631

    Article  CAS  Google Scholar 

  • Scott WE, Stephens ER, Hanst PC, Doerr RC (1957) Further development in the chemistry of the atmosphere. Proc Amer Petrol Inst 37: 171–183

    CAS  Google Scholar 

  • Shigo AL, Hillis WE (1973) Heartwood, discolored wood, and microorganisms in living trees. Ann Rev Phytopath 11: 197–222

    Article  Google Scholar 

  • Shonnard F (1903) Effect of illuminating gas on trees. Dept Public Works Yonders NY, p 48

    Google Scholar 

  • Sisler EC (1980) Partial purification of an ethylene-binding component from plant tissue. Plant Physiol 66: 404–406

    Article  PubMed  CAS  Google Scholar 

  • Sisler EC, Yang SF (1983) Effect of butanes and cyclic olefins on etiolated pea plants in relation to the ethylene response. Plant Physiol (Supp) 72: 40

    Google Scholar 

  • Smith AM, Cook RJ (1974) Implications of ethylene production by bacteria for biological balance of soil. Nature 252: 703–705

    Article  CAS  Google Scholar 

  • Steen DA, Chadwick AV (1981) Ethylene effects in pea stem tissue, evidence of microtubule mediation. Plant Physiol 67: 460–466

    Article  PubMed  CAS  Google Scholar 

  • Tingey DT, Standley C, Field RW (1976) Stress ethylene evolution: a measure of ozone effects on plants. Atmos Environ 10: 969–974

    Article  PubMed  CAS  Google Scholar 

  • Vacha GA, Harvey RB (1927) The use of ethylene, propylene, and similar compounds in breaking the rest period of tubers, bulbs, cuttings, and seeds. Plant Physiol 2: 187–193

    Article  PubMed  CAS  Google Scholar 

  • Vitagliano C (1975) Effects of ethephon stomata, ethylene evolution and abscission in olive (Olea europala L) cv coratina. J Am Soc Horti Sci 100: 482–485

    CAS  Google Scholar 

  • Wallace RH (1928) Histogenesis of intumescence in the apple induced by ethylene gas. Amer J Bot 15: 509–524

    Article  Google Scholar 

  • Wang CY (1983) Use of 1-aminocyclopropane-1-carboxylic acid levels as an index for chilling exposure at various temperatures. Plant Physiol (supp) 72: 43

    Google Scholar 

  • Wolter KE (1977) Ethylene-potential alternative to bipyridilium herbicides for inducing light wood in pine. Proc Lightwood Res Coord Council, p 90–99

    Google Scholar 

  • Wright STC (1980) The effect of plant growth regulator treatments on the levels of ethylene emanating from excised turgid and wilted wheat leaves, Planta 148: 381–388

    Article  CAS  Google Scholar 

  • Zimmerman PW, Hitchcock AE (1933) Initiation and Stimulation of adventitious roots caused by unsaturated hydrocarbon gases. Contrib Boyce Thompson Inst 5: 351–369

    CAS  Google Scholar 

  • Zobel RW, Roberts LW (1974) Control of morphogenesis in the ethylene requiring mutant diageotropica. Can J Bot 52: 735–741

    Article  Google Scholar 

  • Zurfluh LL, Guilfoyle TJ (1982) Auxin- and ethylene-induced changes in the population of translatable messenger RNA in basal sections and intact soybean hypocotyl. Plant Physiol 69: 338–340

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reid, D.M. (1987). Ethylene — A Possible Factor in the Response of Plants to Air Pollution and Acid Precipitation. In: Hutchinson, T.C., Meema, K.M. (eds) Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems. NATO ASI Series, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70874-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70874-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70876-3

  • Online ISBN: 978-3-642-70874-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics