Ecological implications of sun/shade-leaf differentiation in sclerophyllous canopies: Assessment by canopy modeling

  • H. P. Meister
  • M. M. Caldwell
  • J. D. Tenhunen
  • O. L. Lange
Part of the NATO ASI Series book series (volume 15)

Abstract

In mediterranean sclerophyllous shrubs with high leaf area indices, light can be a limiting factor for canopy photosynthesis in the spring when water availability exerts little limitation (Miller 1983, Tenhunen et al. 1984). Light penetration within stands is determined by structural characteristics of the plant, primarily the distribution of leaf area index (LAI), stem area index (SAI), and leaf and stem inclination angles at various levels in the canopies. The resulting light extinction patterns can result in the development of leaves of different morphological and physiological characteristics known as “sun/shade leaf” adaptations. Very different degrees of adaptation have been reported in the literature (e.g. Björkman 1981, Björkman et al. 1972, Schulze 1970, Syvertsen 1984) but data on hard-leaf vegetation have been only rarely available. Also, quantitative estimates of the significance of these shade adaptations for canopy photosynthesis and water use efficiency are seldom attempted.

Keywords

Biomass Dioxide Europe Attenuation Respiration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldocci DD, Hutchison BA, Matt DR, McMillen RT (1984) Seasonal variations in the radiation regime within an oak-hickory forest. Agr Forest Meteorol 33 (2–3): 177–192CrossRefGoogle Scholar
  2. Björkman O (1981) Responses to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds), Encyclopedia of Plant Physiology, NS vol 12A: Physiological Plant Ecology I. Springer, Berlin-Heidelberg-New York-Tokyo, pp 57–107Google Scholar
  3. Björkman O, Ludlow MM, Morrow PA (1972) Photosynthetic performance of two rainforest species in their native habitat and analysis of their gas exchange. Carnegie Inst. Washington Yearb 71: 94–102Google Scholar
  4. Campbell GS (1977) An introduction to environmental biophysics. Springer, Berlin-Heidelberg-New YorkGoogle Scholar
  5. Cody ML, Mooney HA (1978) Convergence versus nonconvergence: mediterranean-climate ecosystems. Ann Rev Ecol Syst 9: 265–321CrossRefGoogle Scholar
  6. Duncan WG, Loomis RS, Williams WA, Hanau R (1967) A model for simulating photosynthesis in plant communities. Hilgardia 38 (4): 181–205Google Scholar
  7. Eckardt FE, Berger A, Methy M, Heim G, Sauvezon R (1977) Interception de l’énergie rayonnante, échanges de CO2, régime hydrique et production chez différents types de végétation sous climat méditerranéen. In: Moyse A (ed) Les processus de la production végétale primaire. Gauthier-Villars, Paris, pp 1–75Google Scholar
  8. Gates DM (1980) Biophysical ecology. Springer, Berlin-Heidelberg-New YorkCrossRefGoogle Scholar
  9. Hall AE, Schulze ED, Lange OL (1976) Current perspectives of steady-state stomatal responses to environment. In: Lange OL, Kappen L, Schulze E-D (eds) Water and Plant Life, Ecological Studies 19. Springer, Berlin- Heidelberg-New York, pp 169–188Google Scholar
  10. Hollinger DY (1983) Photosynthesis, water relations, and herbivory in cooccuring deciduous and evergreen California oaks. Ph.D. Dissertation, Stanford UniversityGoogle Scholar
  11. Jacobson MB, Stoner WA, Richards SP (1981) Models of plant and soil processes. In: Miller PC (ed) Resource Use by Chaparral and Matorral, Ecological Studies 39. Springer, Berlin-Heidelberg-New York, pp 287–433CrossRefGoogle Scholar
  12. Kummerow J, Montenegro G, Krause D (1981) Biomass, phenology and growth. In: Miller PC (ed) Resource Use by Chaparral and Matorral, Ecological Studies 39. Springer, Berlin-Heidelberg-New York, pp 49–96Google Scholar
  13. Lange OL, Tenhunen JD, Harley PC, Walz H (1985) Method for field measurements of C02-exchange. The diurnal changes in net photosynthesis and photosynthetic capacity of lichens under mediterranean climatic conditions. In: Brown DH (ed) Lichen Physiology and Cell Biology. Plenum, New York, pp 23–39Google Scholar
  14. Leterme J (1983) Structure et comportement hydrique de Quercus coccifera L. dans un gradient climatique. Diplome d’Université des Sciences et Techniques du Languedoc, MontpellierGoogle Scholar
  15. Miller PC (1972) Bioclimate, leaf temperature and primary production in red mangrove canopies in South Florida. Ecology 53 (1): 22–45CrossRefGoogle Scholar
  16. Miller PC (1983) Canopy structure of mediterranean-type shrubs in relation to heat and moisture. In: Kruger FJ, Mitchel DT, Jarvis JUM (eds) Mediterranean-type Ecosystems. The Role of Nutrients. Ecological Studies 43. Springer, Berlin-Heidelberg-New York, pp 133–166Google Scholar
  17. Miller PC, Hajek E, Poole DK, Roberts SW (1981) Microclimate and energy exchange. In: Miller PC (ed) Resource Use by Chaparral and Matorral, Ecological Studies 39, Springer, Berlin, pp 49–96CrossRefGoogle Scholar
  18. Monsi M, Saeki T (1953) Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jap J Bot 14: 22–52Google Scholar
  19. Norman J (1980) Interfacing leaf and canopy light interception models. In: JD Hesketh and JW Jones (eds) Predicting Photosynthesis for Ecosystem Models, vol 1. CRC Press, Boca Raton, Florida, pp 49–67Google Scholar
  20. Roberts SW, Miller PC (1977) Interception of solar radiation as affected by canopy organization in two mediterranean shrubs. Oecol Plant 12 (3): 273–290Google Scholar
  21. Schulze, ED (1970) Der CO2-Gaswechsel der Buche (Fagus sylvatica L.) in Abhaengigkeit von den Klimafaktoren im Freiland. Flora 159: 177–232Google Scholar
  22. Schulze ED, Hall AE, Lange OL, Walz H (1982) A portable steady-state porometer for measuring the carbon dioxide and water vapor exchanges of leaves under natural conditions. Oecologia (Berl) 53: 141–145CrossRefGoogle Scholar
  23. Seeber, MC (1984) Bestandestruktur, Mikroklima und Energiehaushalt von Grasbestaenden zwischen 1500 und 2500m MH. Dissertation, Leopold- Franzens-Universität InnsbruckGoogle Scholar
  24. Syvertsen JP (1984) Light acclimation in citrus leaves. II. CO2 assimilation and light, water, and nitrogen use efficiency. J Amer Hort Sci 109 (6): 812–817Google Scholar
  25. Tenhunen JD, Lange OL, Harley PC, Beyschlag W, Meyer A (1985) Limitations due to water stress on leaf net photosynthesis of Quercus coccifera in the Portuguese evergreen scrub. Oecologia (Berl) 67, 23–30CrossRefGoogle Scholar
  26. Tenhunen JD, Meister HP, Caldwell MM, Lange OL (1984) Environmental constraints on productivity of the Mediterranean sclerophyll shrub Quercus coccifera. Proceedings of INTECOL workshop - Rates of Natural Primary Productivity and Agricultural Production. Options méditerranéennes (Instituto Agronomico Mediterraneo de Zaragoza) 84/1: 33–53Google Scholar
  27. Tenhunen JD, Weber JA, Yocum CS, Gates DM (1976) Development of a photosynthesis model with an emphasis on ecological applications. II Analysis of a data set describing the PM surface. Oecologia (Berl) 26: 101–119CrossRefGoogle Scholar
  28. Warren Wilson J (1960) Inclined point quadrats. New Phytol 59: 1–8CrossRefGoogle Scholar
  29. Weber JA, Jurick TW, Tenhunen JD, Gates DM (1985) Analysis of gas exchange in seedling of Acer saccharum: Integration of field and laboratory studies. Oecologia (Berl.) 65: 338–34CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • H. P. Meister
    • 1
  • M. M. Caldwell
    • 2
  • J. D. Tenhunen
    • 3
  • O. L. Lange
    • 1
  1. 1.Lehrstuhl für Botanik IIder Universität WürzburgWürzburgWest Germany
  2. 2.Department of Range ScienceUtah State UniversityLoganUSA
  3. 3.Systems Ecology Research GroupSan Diego State UniversitySan DiegoUSA

Personalised recommendations