Skip to main content

Root to shoot communication of the effects of soil drying, flooding or increase salinity. A case for the involvement of plant growth regulators in a multiple chemical signal

  • Conference paper
Book cover Plant Response to Stress

Part of the book series: NATO ASI Series ((ASIG,volume 15))

Abstract

The discovery of the first plant growth regulators in the 1930s arose out of enormous interest in the control of growth and development of plants. This interest continues today but there is still considerable uncertainty about the biosynthesis of growth regulators and their roles in plants. Nevertheless we are aware that environmental stresses can have significant effects on synthesis and metabolism. For example, very large increases in the endogenous content of abscisic acid (ABA) are promoted by increasing water deficit and by flooding. These observations, (reported in 1969 by Wright and co-workers at Wye College in the U.K.) probably more than any other single piece of work, stimulated interest in a link between stress, plant growth regulators and the growth and development of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharoni M, Richmond AE (1978) Endogenous gibberellin and and abscisic acid content as related to senescence of detached lettuce leaves. Plant Physiol 62: 224–228

    Article  PubMed  CAS  Google Scholar 

  • Aharoni M, Blumenfeld A, Richmond AE (1977) Hormonal activity in detached lettuce leaves as affected by leaf water content. Plant Physiol 59: 1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Apelbaum A, Yang SF (1981) Biosynthesis of stress ethylene induced by water deficit. Plant Physiol 68: 594–596

    Article  PubMed  CAS  Google Scholar 

  • Ayres PG (1981) Responses of stomata to pathogenic micro-organisms. In: Jarvis PG and Mansfield TA (eds) Stomatal Physiology. Cambridge University Press, Cambridge, p 295

    Google Scholar 

  • Beardsell MF, Cohen D (1975) Relationships between leaf water status, abscisic acid levels, and stomatal resistance in maize and sorghum. Plant Physiol 56: 207–212

    Article  PubMed  CAS  Google Scholar 

  • Begg JE, Turner NC (1976) Crop water deficits. In: Brady NC (ed) Advances in Agronomy, Vol. 28. Academic Press, New York, p 411

    Google Scholar 

  • Blackman PG, Davies WJ (1983) The effects of cytokinins and ABA on stomatal behaviour of maize and Commelina. J Exp Bot 34: 1619–1626

    Article  CAS  Google Scholar 

  • Blackman PG, Davies WJ (1984) Modification of the CO2 responses of maize stomata by abscisic acid and by naturally-occurring and synthetic cytokinins. J Exp Bot 35: 174–179

    Article  CAS  Google Scholar 

  • Blackman PG, Davies WJ (1985) Root to shoot communication in maize plants of the effects of soil drying. J Exp Bot 36: 39–48

    Article  Google Scholar 

  • Burrows WJ, Carr DT (1969) Effect of flooding the root system of sunflower plants on the cytokinin content of the xylem sap. Physiol Plant 22: 1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Burschka C, Tenhunen JD, Hartung W (1983) Diurnal variations in abscisic acid content and stomatal responses to applied abscisic acid in leaves of irrigated and nonirrigated Arbutus unedo plants under naturally fluctuating environmental conditions. Oecologia 58: 128–131

    Article  Google Scholar 

  • Chen HH, Li PH, Brenner ML (1983) Involvement of abscisic acid in potato cold acclimation. Plant Physiol 71: 362–365

    Article  PubMed  CAS  Google Scholar 

  • Cornic G, Miginiac E (1983) Nonstomatal inhibition of net CO2 uptake by (±) abscisic acid in Pharbitis nil. Plant Physiol 73: 529–533

    Article  PubMed  CAS  Google Scholar 

  • Cowan IR (1982) Regulation of water use in relation to carbon gain in higher plants. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Water Relations and Carbon Assimilation Vol 12B Enc Plant Physiol NS Springer Verlag, Berlin, p 747

    Google Scholar 

  • Cowan IR, Raven JA, Hartung W, Farquhar GD (1982) A possible role for abscisic acid in coupling stomatal conductance and photosynthetic carbon metabolism. Aust J Plant Physiol 9: 489–498

    Article  CAS  Google Scholar 

  • Davenport TL, Morgan PW, Jordan WR (1977) Auxin transport as related to leaf abscission during water stress in cotton. Plant Physiol 59: 554–557

    Article  PubMed  CAS  Google Scholar 

  • Davenport TL, Morgan PW, Jordan WR (1980) Reduction of auxin transport capacity with age and internal water deficits in cotton petioles. Plant Physiol 65: 1023–1025

    Article  PubMed  CAS  Google Scholar 

  • Davies WJ, Sharp RE (1981) The root: a sensitive detector of a reduction in water availability? In: Kralovic J (ed) Mechanisms of Assimilate Distribution and Plant Growth Regulators. Slovak Soc of Agric, Ivanka pri Dunjani, Czechoslovakia, p 354

    Google Scholar 

  • Davies WJ, Rodriguez JL, Fiscus EL (1982) Stomatal behaviour and water movement through roots of wheat plants treated with abscisic acid. Plant Cell and Env 5: 485–493

    Article  Google Scholar 

  • Davies WJ, Metcalfe J, Lodge TA, Costa AR (1986) Plant growth substances and the regulation of growth under drought. Aust J Plant Physiol (in press)

    Google Scholar 

  • Derbyshire B (1971) Changes in indoleacetic acid oxidase activity associated with plant water potential. Physiol Plant 25: 80–84

    Article  Google Scholar 

  • De Silva DLR, Hetherington AM, Mansfield TA (1985) Synergism between calcium ions and abscisic acid in preventing stomatal opening. New Phytol (in press)

    Google Scholar 

  • Dewdney SJ, McWha JA (1979) Abscisic acid and the movement of photosynthetic assimilates towards developing wheat grains. Z Pflanzenphysiol 92: 183–186

    CAS  Google Scholar 

  • Dubbe DR, Farquhar GD, Raschke K (1978) Effect of abscisic acid on the gain of the feedback loop involving carbon dioxide and stomata. Plant Physiol 62: 413–417

    Article  PubMed  CAS  Google Scholar 

  • Fiscus EL (1981) Effects of abscisic acid on the hydraulic conductance of and the total ion transport through Phaseolus root systems. Plant Physiol 68: 169–174

    Article  PubMed  CAS  Google Scholar 

  • Glinka Z (1980) Abscisic acid promotes both volume flow and ion release to the xylem in sunflower roots. Plant Physiol 65: 537–540

    Article  PubMed  CAS  Google Scholar 

  • Goldbach E, Goldbach H, Wagner H, Michael G (1975) Influence of N-deficiency on the abscisic acid content of sunflower plants. Physiol Plant 34: 138–140

    Article  CAS  Google Scholar 

  • Hall HK, McWha J A (1981) Effects of abscisic acid on growth of wheat (Triticum aestivum L.) Ann Bot 47: 427–433

    CAS  Google Scholar 

  • Hartung W, Witt J (1968) Über den Einfluß der Bodenfeuchtigkeit auf den Wuchsstoffgehalt von Anastaticahierochuntica und Helianthus annuus. Flora (Jena) Abt. B 157: 603–614

    Google Scholar 

  • Hartung W, Heilmann B, Gimmler H (1981) Do chloroplasts play a role in abscisic acid synthesis? Plant Sci Lett 22: 235–242

    Article  CAS  Google Scholar 

  • Hartung W, Kaiser WM, Burschka C (1983) Release of abscisic acid from leaf strips under osmotic stress. Z Pflanzenphysiol 112: 131–138

    CAS  Google Scholar 

  • Henson I (1983) Abscisic acid and water relations of rice (Oryza sativa L.): effects of drought conditioning on abscisic acid accumulation in the leaf and stomatal response. Ann Bot 52: 247–255

    CAS  Google Scholar 

  • Hubick KT, Taylor JS, Reid DM (1985) The effect of drought on levels of abscisic acid, cytokinins, gibberellins and ethylene in aeroponically-grown sunflower plants. Plant Growth Reg (in press)

    Google Scholar 

  • Innes P, Blackwell RD, Quarrie SA (1984) Some effects of genetic variation in drought-induced abscisic acid accumulation on the yield and water use of spring wheat. J Agric Sci Camb 102: 341–351

    Article  CAS  Google Scholar 

  • Itai C, Vaadia Y (1965) Kinetin-like activity in root exudate of water-stressed sunflower plants. Physiol Plant 18: 941–944

    Article  CAS  Google Scholar 

  • Itai C, Vaadia Y (1971) Cytokinin activity in water stressed shoots. Plant Physiol 47: 87–90

    Article  PubMed  CAS  Google Scholar 

  • Itai C, Richmond A, Vaadia Y (1968) The role of root cytokinins during water and salinity stress. Israel J Bot 17: 187–195

    CAS  Google Scholar 

  • Jackson MB, Kowalewska AKB (1983) Positive and negative messages from roots induce foliar desiccation and stomatal closure in flooded pea plants. J Exp Bot 34: 493–506

    Article  CAS  Google Scholar 

  • Jewer PC, Incoll LD (1981) Promotion of stomatal opening in detached epidermis of Kalanchoe by natural and synthetic cytokinins. Planta 153: 317–318

    Article  CAS  Google Scholar 

  • Jones HG (1980) Interaction and integration of adaptive responses to water stress: the implications of an unpredictable environment. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley and Sons, New York, p 436

    Google Scholar 

  • Jones RJ, Mansfield TA (1972) Effects of abscisic acid and its esters on stomatal aperture and the transpiration ratio. Physiol Plant 26: 321–327

    Article  CAS  Google Scholar 

  • Karmoker JL, Van Steveninck RFM (1979) The effect of abscisic acid on sugar levels in seedlings of Phaseolus vulgaris L. cv. Redland Pioneer. Planta 146: 25–30

    Article  CAS  Google Scholar 

  • King RW, Patrick JW (1982) Control of assimilate movement in wheat. Is abscisic acid involved? Z Pflanzenphysiol 106: 375–380

    CAS  Google Scholar 

  • Mansfield TA (1976) Chemical control of stomatal movements. Phil Trans Roy Soc Ser B 284: 471–482

    Article  Google Scholar 

  • Mizrahi Y, Blumenfeld A, Richmond AE (1972) The role of abscisic acid and salination in the adaptive response of plants to reduced root aeration. Plant Cell Physiol 13: 15–21

    Google Scholar 

  • Morgan JM (1980) Possible role of abscisic acid in reducing seed set in water stressed wheat plants. Nature 285: 655–657

    Article  CAS  Google Scholar 

  • Pierce M, Raschke K (1980) Correlation between loss of turgor and accumulation of abscisic acid in detached leaves. Planta 148: 174–182

    Article  CAS  Google Scholar 

  • Quarrie SA (1982) The role of abscisic acid in the control of spring wheat growth and development. In: Wareing PF (ed) Plant Growth Substances 1982. Academic Press, London, p 683

    Google Scholar 

  • Quarrie SA (1984) Abscisic acid and drought resistance in crop plants. BPGRG News Bull 7: 1–15

    Google Scholar 

  • Quarrie SA, Jones HG (1977) Effects of abscisic acid and water stress on development and morphology of wheat. J Exp Bot 28: 192–203

    Article  CAS  Google Scholar 

  • Quarrie SA, Lister PG (1983) Characterisation of spring wheat genotypes differing in drought-induced abscisic acid accumulation. In: Drought Stressed ABA Production. J Exp Bot 34: 1260–1270

    Google Scholar 

  • Radin JW (1984) Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants. Plant Physiol 76: 392–394

    Article  PubMed  CAS  Google Scholar 

  • Radin JW, Parker LL, Guinn G (1982) Water relations of cotton plants under nitrogen deficiency. V Environmental control of abscisic acid accumulation and stomatal sensitivity to abscisic acid. Plant Physiol 70: 1066–1070

    Article  PubMed  CAS  Google Scholar 

  • Raschke K (1982) Involvement of abscisic acid in the regulation of gas exchange: evidence and inconsistencies. In: Wareing PF (ed) Plant Growth Substances 1982. Academic Press, London, p 683

    Google Scholar 

  • Saini MS, Aspinall D (1982) Sterility in wheat (Triticum aestivum L.) induced by water deficit or high temperature: possible mediation by abscisic acid. Assist J Plant Physiol 9: 529–537

    Article  CAS  Google Scholar 

  • Salama AM El-Da, Wareing PF (1979) Effects of mineral nutrition on endogenous cytokinins in plants of sunflower (Helianthus annuus L.). J. Exp Bot 30: 971–981

    Article  CAS  Google Scholar 

  • Shaner DL, Boyer JS (1976) Nitrate reductase activity in maize leaves. II. Regulation of nitrate flux at low leaf water potential. Plant Physiol 58: 505–509

    Article  PubMed  CAS  Google Scholar 

  • Sharp RE, Davies WJ (1979) Solute regulation and growth by roots and shoots of water stressed maize plants. Planta 147: 43–49

    Article  CAS  Google Scholar 

  • Sharp RE, Davies WJ (1985) Root growth and water uptake by maize plants in drying soil. J Exp Bot 36: 1441–1456

    Article  Google Scholar 

  • Smith TA (1985) Polyamines. Ann Rev Plant Physiol 36: 117–143

    Article  CAS  Google Scholar 

  • Snaith PJ, Mansfield TA (1982) Control of the CO2 responses of stomata by indol-3-yl acetic acid and abscisic acid. J Exp Bot 33: 360–365

    Article  CAS  Google Scholar 

  • Taylor IB, Rossall S (1982) The genetic relationship between the tomato mutants flacca and lateral suppressor, with reference to abscisic acid accumulation. Planta 154: 1–6

    Article  CAS  Google Scholar 

  • Termaat A, Passioura JB, Munns R (1985) Shoot turgor does not limit shoot growth of NaCl-treated wheat and barley. Plant Physiol 77 (in press)

    Google Scholar 

  • Tietz A, Dingkuhn M (1981) Regulation of assimilate transport in barley by the abscisic acid content of young caryopses. Z Pflanzenphysiol 104: 475–479

    CAS  Google Scholar 

  • Tietz A, Ludewig M, Dingkuhn M, Dorfling K (1981) Effect of abscisic acid on the transport of assimilates in barley. Planta 152: 557–561

    Article  CAS  Google Scholar 

  • Turner NC, Schulze ED, Gollan T (1985) The responses to vapour pressure deficits and soil water content 11. In the mesophytic herbaceous species Helianthus annuus. Oecologia 65: 348–355

    Google Scholar 

  • Van Staden J, Davey JE (1979) The synthesis, transport and metabolism of endogenous cytokinins. Plant Cell and Env 2: 93–106

    Article  Google Scholar 

  • Van Volkenburgh E, Davies WJ (1983) Inhibition of light stimulated leaf expansion by abscisic acid. J Exp Bot 34: 835–845

    Article  Google Scholar 

  • Van Volkenburgh E, Boyer JS (1985) Inhibitory effects of water deficits on maize leaf elongation. Plant Physiol 77: 190–194

    Article  PubMed  Google Scholar 

  • Walker MA, Dumbroff EB (1981) Effects of salt stress on abscisic acid and cytokinin levels in tomato. Z Pflanzenphysiol 101: 461–470

    CAS  Google Scholar 

  • Walton DC, Harrison MA, Cote P (1976) The effects of water stress on abscisic acid levels and metabolism in roots of Phaseolus vulgaris L. and other plants. Hanta 131: 141–144

    CAS  Google Scholar 

  • Watts S, Rodriguez JL, Evans SE, Davies WJ (1981) Root and shoot growth of plants treated with abscisic acid. Ann Bot 47: 595–602

    CAS  Google Scholar 

  • Wilson JA, Ogunkanmi AB, Mansfield TA (1978) Effects of external potassium supply on stomatal closure induced by abscisic acid. Plant Cell and Env 1: 199–201

    Article  Google Scholar 

  • Yang SF, Pratt HK (1978) The physiology of ethylene in wounded plant tissues. In: Kahl G (ed) Biochemistry of wounded plant tissues. De Cruyter, Berlin, p 741

    Google Scholar 

  • Yang SF, Hoffman HE, McKeon T, Riov J, Kao CH, Yung KH (1982) Mechanism and regulation of ethylene biosynthesis. In: Wareing PF (ed) Plant growth substances 1982. Academic Press, London, p 683

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Davies, W.J., Blackman, P.G., Lodge, T.R., Rosa da Costa, A., Metcalfe, J. (1987). Root to shoot communication of the effects of soil drying, flooding or increase salinity. A case for the involvement of plant growth regulators in a multiple chemical signal. In: Tenhunen, J.D., Catarino, F.M., Lange, O.L., Oechel, W.C. (eds) Plant Response to Stress. NATO ASI Series, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70868-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70868-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70870-1

  • Online ISBN: 978-3-642-70868-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics