Skip to main content

Role of Metallothionein in Cadmium Metabolism

  • Chapter
Cadmium

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 80))

Abstract

Induction of the synthesis of the metal-binding protein, thionein, is not only a particularly interesting feature of the biochemistry of the cadmium (Cd) ion, but also of considerable importance in relation to its metabolism and chronic toxicity. As Cd is neither an abundant element, nor readily absorbed through the mammalian gastrointestinal tract, normally only small amounts of it are transmitted through the food chain to animals and humans. Nevertheless, much of the absorbed Cd is retained, principally in the liver and kidneys and, even in uncontaminated environments, long-lived animal species may accumulate appreciable body burdens during their lifetimes. Earlier studies, reviewed by Vallee (1979) had shown the presence of Cd in a wide variety of biological tissues, relatively high concentrations usually being present in human and equine renal cortex. A search for a possible biochemical function of this seemingly biologically ubiquitous element led to the isolation from horse kidney of a low molecular weight protein, deficient in aromatic amino acids, which not only had a high content of Cd (20–25 mg per gram protein), but also contained most of the Cd in the tissue (Margoshes and Vallee 1957). Subsequent preparations of the metalloprotein by improved methods (Kägi and Vallee 1960, 1961) were found to contain 5% Cd, 2.2% Zn, 0.4% Fe, 0.18% Cu, 14.9% N, and 8.5% S. Because of the presence of several metals, in addition to Cd and the high sulphur content Kägi and Vallee (1960) named the metalloprotein “metallothionein”, i.e. a metallo-derivative of the sulphur-rich protein, thionein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel J, Ohnesorge FK (1980) Energy-linked immunosorbent assay for metallothionein. Toxicol Lett SI No. 1:131

    Google Scholar 

  • Ahokas RA, Dilts PV (1979) Cadmium uptake by the rat embryo as a function of gestational age. Am J Obstet Gynecol 135:219–220

    PubMed  CAS  Google Scholar 

  • Ahokas RA, Dilts PV, LeHaye EB (1980) Cadmium-induced fetal growth retardation: protective effects of excess dietary zinc. Am J Obstet Gynecol 136:216–221

    PubMed  CAS  Google Scholar 

  • Amacher DE, Ewing KL (1975) A soluble cadmium binding component in rat and dog spleen. Arch Environ Health 30:510–513

    PubMed  CAS  Google Scholar 

  • Andersen RD, Winter PE, Mäher JJ, Bernstein IA (1978) Turnover of metallothioneins in rat liver. Biochem J 174:327–338

    PubMed  CAS  Google Scholar 

  • Andersen RD, Piletz JE, Birren BW, Herschman HR (1983) Levels of metallothionein messenger RNA in fetal, neonatal and maternal rat liver. Eur J Biochem 131:497–500

    PubMed  CAS  Google Scholar 

  • Anke M, Schneider H-J (1974) Trace elements of the human kidney in relation to age and sex. Z Urol Nephrol 67:357–363

    PubMed  CAS  Google Scholar 

  • Anke M, Klinger G, Grün M, Schneider H-J (1979) The dependence of the Cd-concentration in animals and human-beings on sex and age. In: Anke M, Schneider H-J (eds) Kadmium symposium. Friedrich Schiller University, Jena, pp 72–78

    Google Scholar 

  • Asokan P, Tandon SK (1981) Effect of cadmium on hepatic metallothionein levels in early development of the rat. Environ Res 24:201–206

    PubMed  CAS  Google Scholar 

  • Bakka A, Webb M (1981) Metabolism of zinc and copper in the neonate: changes in the concentrations and contents of thionein-bound Zn and Cu with age in the livers of the newborn of various mammalian species. Biochem Pharmacol 30:721–725

    PubMed  CAS  Google Scholar 

  • Bakka A, Samarawickrama GP, Webb M (1981) Metabolism of zinc and copper in the neonate: effect of cadmium administration during late gestation in the rat on the zinc and copper metabolism of the newborn. Chem Biol Interact 34:161–171

    PubMed  CAS  Google Scholar 

  • Bakka A, Eriksen D, Rugstad HE, Bauer R (1982) Identification of cadmium binding sites within living human cells by perturbed angular correlation spectroscopy. FEBS Lett 139:57–60

    PubMed  CAS  Google Scholar 

  • Banerjee D, Onosaka S, Cherian MG (1982) Immunohistochemical localization of metallothionein in the cell nucleus and cytoplasm of rat liver and kidney. Toxicology 24:95–105

    PubMed  CAS  Google Scholar 

  • Barański B, Stetkiewicz I, Trzcinka-Ochocka M, Sitarek K, Szymczak W (1982) Teratogenicity, fetal toxicity and tissue concentration of cadmium administered to female rats during organogenesis. J Appl Toxicol 2:255–259

    PubMed  Google Scholar 

  • Bell JU (1979 a) Native metallothionein levels in rat hepatic cytosol during perinatal development. Toxicol Appl Pharmacol 54:148–155

    Google Scholar 

  • Bell JU (1979 b) A renal: hepatic comparison of metallothionein in the sheep fetus. Toxicol Lett 4:407–411

    CAS  Google Scholar 

  • Bell JU (1980) Induction of hepatic metallothionein in the immature rat following administration of cadmium. Toxicol Appl Pharmacol 54:148–155

    PubMed  CAS  Google Scholar 

  • Beltramini M, Lerch K (1982) Copper transfer between Neurospora copper-metallothionein and type 3 copper apoproteins. FEBS Lett 142:219–222

    PubMed  CAS  Google Scholar 

  • Benson JM, Henderson RF (1980) Isolation and characterization of a low molecular weight cadmium-binding protein from Syrian hamster lung. Toxicol Appl Pharmacol 55:370–377

    PubMed  CAS  Google Scholar 

  • Berliner AF, Jones-Witters P (1975) Early effects of a lethal cadmium dose on the gerbil testis. Biol Reproduct 13:240–247

    CAS  Google Scholar 

  • Bernard A, Goret A, Buchet JP, Roels H, Lowerys R (1980) Characterization of the proteinuria induced by long term administration of cadmium in rat (Abstr). 19th Annual Meeting of the Society of Toxicology, A 280

    Google Scholar 

  • Besterman JM, Low RB (1983) Endocytosis: a review of mechanisms and plasma membrane dynamics. Biochem J 210:1–13

    PubMed  CAS  Google Scholar 

  • Bordas J, Koch MHJ, Hartmann H-J, Weser U (1982) Tetrahedral Cu-S coordination in yeast copper-thionein: an EXAFS study. FEBS Lett 140:19–21

    PubMed  CAS  Google Scholar 

  • Boulanger Y, Armitage IM (1982) 113Cd study of the metal cluster structure of human liver metallothionein. J Inorg Biochem 17:147–153

    PubMed  CAS  Google Scholar 

  • Bourdeau JE, Chen ERY, Carone FA (1973) Insulin uptake in the renal proximal tubule. Am J Physiol 225:1399–1404

    PubMed  CAS  Google Scholar 

  • Brady FO (1981) Synthesis of rat hepatic zinc-metallothionein in response to the stress of sham operation. Life Sci 28:1647–1654

    PubMed  CAS  Google Scholar 

  • Brady FO (1982) The physiological function of metallothionein. Trends Biochem Sci 7:143–145

    CAS  Google Scholar 

  • Brady FO, Kafka RL (1979) Radioimmunoassay of rat liver metallothionein. Anal Biochem 98:89–94

    PubMed  CAS  Google Scholar 

  • Brady FO, Webb M (1981) Metabolism of zinc and copper in the neonate. (Zinc,copper)-thionein in the developing rat kidney and testis. J Biol Chem 256:3931–3935

    PubMed  CAS  Google Scholar 

  • Bremner I (1976) The relationship between the zinc status of pigs and the occurrence of copper and zinc-binding proteins in the liver. Br J Nutr 35:245–252

    PubMed  CAS  Google Scholar 

  • Bremner I (1979) Mammalian absorption, transport and excretion of cadmium. In: Webb M (ed) The chemistry, biochemistry and biology of cadmium. Elsevier/North-Holland, Amsterdam, pp 175–193

    Google Scholar 

  • Bremner I (1982) The nature and function of metallothionein. In: Gawthorne JM, Howell JMcC, White CL (eds) Trace element metabolism in man and animals-4. Springer, Berlin Heidelberg New York, pp 637–644

    Google Scholar 

  • Bremner I, Davies NT (1974) Studies on the appearance of a zinc binding protein in rat pancreas. Biochem Soc Trans 2:654–656

    Google Scholar 

  • Bremner I, Williams RB, Young BW (1977) Distribution of zinc and copper in the liver of the developing sheep foetus. Br J Nutr 38:87–92

    PubMed  CAS  Google Scholar 

  • Bremner I, Hoekstra WG, Davies NT, Young BW (1978) Effect of zinc status on the synthesis and degradation of copper-induced thioneins. Biochem J 174:883–892

    PubMed  CAS  Google Scholar 

  • Bremner I, Williams RB, Young BW (1981) The effects of age, sex and zinc status ont he accumulation of (Cu,Zn)-metallothionein in rat kidneys. J Inorg Biochem 14:135–146

    PubMed  CAS  Google Scholar 

  • Briggs RW, Armitage IM (1981) Evidence for site selective metal binding in calf liver metallothionein. J Biol Chem 257:1259–1262

    Google Scholar 

  • Cain K, Griffiths BL (1980) Transfer of liver cadmium to the kidney after aflatoxin-in-duced liver damage. Biochem Pharmacol 29:1852–1855

    PubMed  CAS  Google Scholar 

  • Cain K, Griffiths BL (1983) A comparison of isometallothionein synthesis in rat liver after partial hepatectomy and parenteral zinc injection. Biochem J 217:85–92

    Google Scholar 

  • Cain K, Holt DT (1979) Metallothionein degradation: metal composition as a controlling factor. Chem Biol Interact 28:91–106

    PubMed  CAS  Google Scholar 

  • Cain K, Holt DE (1983) Studies of eadmium-thionein induced nephropathy. Time course of eadmium-thionein uptake and degradation. Chem Biol Interact 43:223–237

    PubMed  CAS  Google Scholar 

  • Cain K, Skilleter DN (1980) Selective uptake of cadmium by parenchymal cells of liver. Biochem J 188:285–288

    PubMed  CAS  Google Scholar 

  • Cain K, Skilleter DN (1983) Comparison of cadmium-metallothionein synthesis in parenchymal and non-parenchymal liver cells. Biochem J 210:769–773

    PubMed  CAS  Google Scholar 

  • Cain K, Webb M (1983) Metallothionein and its relationship to the toxicity of cadmium and other metals in the young. In: Schmidt EHF, Hildebrandt AG (eds) Health evaluation of infant formula and junior food. Springer, Berlin Heidelberg New York, pp 105–111

    Google Scholar 

  • Campbell JK, Mills CF (1975) Effects of dietary cadmium and zinc on rats maintained on diets low in copper. Proc Nutr Soc 33:15A-17A

    Google Scholar 

  • Cantilena LR, Klaassen CD (1982) Decreased effectiveness of chelation therapy with time after acute cadmium poisoning. Toxicol Appl Pharmacol 63:172–180

    Google Scholar 

  • Carone FA, Peterson DR, Oparil S, Pullman NT (1980) Renal tubular transport and catabolism of small peptides. In: Maunsbach AB, Olsen TS, Christensen EI (eds) Ultrastructure of the kidney. Academic, New York, pp 327–340

    Google Scholar 

  • Carrasco L, Yalquez D, Hernandez-Lucas C, Carbonero P, Garcia-Olmedo F (1981) Thionins: plant peptides that modify membrane permeability in cultured mammalian cells. Eur J Biochem 116:185–189

    PubMed  CAS  Google Scholar 

  • Cempel M, Webb M (1976) The time course of eadmium-thionein synthesis in the rat. Biochem Pharmacol 25:2067–2071

    PubMed  CAS  Google Scholar 

  • Chang CC, Vander Mallie RJ, Garvey SJ (1980) A radioimmunoassay for human metallothionein. Toxicol Appl Pharmacol 55:94–102

    PubMed  CAS  Google Scholar 

  • Chen RW, Ganther HE (1975) Relative cadmium binding capacity of metallothioneins and other cytosolic fractions in various tissues of the rat. Environ Physiol Biochem 5:378–388

    PubMed  CAS  Google Scholar 

  • Chen RW, Wagner P, Ganther HE, Hoekstra WG (1972) A low molecular weight cadmium-binding protein in testes of rats. Possible role in cadmium-induced testicular damage. Fed Proc 31:699

    Google Scholar 

  • Chen RW, Whanger PD, Weswig PH (1975) Biological function of metallothionein. I. Synthesis and degradation of rat liver metallothionein. Biochem Med 12:95–105

    PubMed  CAS  Google Scholar 

  • Chen RW, Vasey EJ, Whanger PD (1977) Accumulation and depletion of zinc in rat liver and kidney metallothionein. J Nutr 107:805–813

    PubMed  CAS  Google Scholar 

  • Cherian MG (1977) Biliary excretion of cadmium in rat. II. The role of metallothionein in the hepatobiliary transport of cadmium. J Toxicol Environ Health 2:955–961

    PubMed  CAS  Google Scholar 

  • Cherian MG (1978) Induction of renal metallothionein synthesis by parenteral cadmium-thionein in rats. Biochem Pharmacol 27:1163–1166

    PubMed  CAS  Google Scholar 

  • Cherian MG (1979) Metabolism of orally administered eadmium-metallothionein in mice. Environ Health Perspect 28:127–130

    PubMed  CAS  Google Scholar 

  • Cherian MG (1980 a) Biliary excretion of cadmium in the rat. III. Effects of chelating agents and change in intracellular thiol content on biliary transport and tissue distribution of cadmium. J Toxicol Environ Health 6:379–391

    PubMed  CAS  Google Scholar 

  • Cherian MG (1980 b) Biliary excretion of cadmium in the rat. IV. Mobilization of cadmium from metallothioneins by 2,3-dimercaptopropanol. J Toxicol Environ Health 6:393–401

    PubMed  CAS  Google Scholar 

  • Cherian MG (1982) Studies on toxicity of metallothionein in rat kidney epithelial cell culture. In: Foulkes EC (ed) Biological roles of metallothionein. Elsevier/North-Holland, Amsterdam, pp 193–202

    Google Scholar 

  • Cherian MG, Goyer RA (1978) Metallothioneins and their role in the metabolism and toxicity of metals. Life Sci 10:1–10

    Google Scholar 

  • Cherian MG, Rogers K (1982) Chelation of cadmium from metallothionein in vivo and its excretion in rats repeatedly injected with cadmium chloride. J Pharmacol Exp Ther 222:699–704

    PubMed  CAS  Google Scholar 

  • Cherian MG, Shaikh ZA (1975) Metabolism of intravenously injected cadmium-binding protein. Biochem Biophys Res Commun 65:863–869

    PubMed  CAS  Google Scholar 

  • Cherian MG, Goyer RA, Delaquerriere-Richardson L (1976) Cadmium-metallothionein induced nephropathy. Toxicol Appl Pharmacol 38:399–408

    PubMed  CAS  Google Scholar 

  • Cherian MG, Goyer RA, Delaquerriere-Richardson L (1977) Relationship between plasma cadmium-thionein and cadmium-induced nephropathy. Toxicol Appl Pharmacol 41:145–146

    Google Scholar 

  • Cherian MG, Goyer RA, Valberg LS (1978) Gastrointestinal absorption and organ distribution of oral cadmium chloride and cadmium-metallothionein in mice. J Toxicol Environ Health 4:861–868

    PubMed  CAS  Google Scholar 

  • Cherian MG, Yu S, Redman CM (1981) Site of synthesis of metallothionein in rat liver. Can J Biochem 59:301–306

    PubMed  CAS  Google Scholar 

  • Cherian MG, Onosaka S, Carson GK, Dean PAW (1982) Biliary excretion of cadmium in the rat. V. Effects of structurally related mercaptans on chelation of cadmium from metallothionein. J Toxicol Environ Health 9:389–399

    PubMed  CAS  Google Scholar 

  • Chiquoine AD (1965) Effect of cadmium chloride on pregnant albino mouse. J Reprod Fertil 10:263–265

    PubMed  CAS  Google Scholar 

  • Chiquoine AD, Suntzeff V (1965) Sensitivity of mammals to cadmium necrosis of the testis. J Reprod Fertil 10:455–457

    PubMed  CAS  Google Scholar 

  • Choudhury H, Srivastava L, Murthy L, Petering HG (1974) Some observations on trace metal and endocrine relationships in male and female rats. Poultry Sci 53:1910

    Google Scholar 

  • Choudhury H, Hastings L, Merden E, Brokman D, Cooper GP, Petering HG (1978) Effect of low level prenatal cadmium exposure on trace metal body burden and behavior in Sprague-Dawley rats. In: Kirchgessner M (ed) Trace element metabolism in man and animals-3. Institut für Ernährungsphysiologie, Technische Universität München, Freising-Weihenstephan, pp 549–552

    Google Scholar 

  • Christensen ET, Maunsbach AB (1974) Intralysosomal digestion of lysozyme in renal proximal tubules. Kidney Int 6:396–407

    PubMed  CAS  Google Scholar 

  • Colucci AV, Winge D, Krasno J (1975) Cadmium accumulation in rat liver. Arch Environ Health 30:153–157

    PubMed  CAS  Google Scholar 

  • Cousins RJ (1979) Regulatory aspects of zinc metabolism in liver and intestine. Nutr Rev 37:97–103

    PubMed  CAS  Google Scholar 

  • Cox CC, Waters MD (1978) Isolation of a soluble cadmium-binding protein from pulmonary alveolar macrophages. Toxicol Appl Pharmacol 46:385–394

    PubMed  CAS  Google Scholar 

  • Danielson KG, Ohi S, Huang PC (1982) Immunochemical detection of metallothionein in specific epithelial cells of rat organs. Proc Natl Acad Sci USA 79:2301–2304

    PubMed  CAS  Google Scholar 

  • Davies NT, Campbell JK (1977) The effect of cadmium on intestinal copper absorption and binding in the rat. Life Sci 20:955–960

    PubMed  CAS  Google Scholar 

  • Durnam DM, Palmiter RD (1981) Transcriptional regulation of the mouse metallothionein-1 gene by heavy metals. J Biol Chem 256:5712–5716

    PubMed  CAS  Google Scholar 

  • Durnam DM, Perrin F, Gahnon F, Palmiter RD (1980) Isolation and characterization of the mouse metallothionein-1 gene. Proc Natl Acad Sci USA 77:6511–6515

    PubMed  CAS  Google Scholar 

  • Elinder CG, Nordberg M, Palm B, Piscator M (1981) Cadmium, zinc and copper in horse liver and in horse liver metallothionein: comparison with kidney cortex. Environ Res 26:22–32

    PubMed  CAS  Google Scholar 

  • Engström B, Nordberg GF (1979) Factors influencing absorption and retention of oral 109Cd in mice: age, pretreatment and subsequent treatment with non-radioactive cadmium. Acta Pharmacol Toxicol (Copenh) 45:315–324

    Google Scholar 

  • Etzal KR, Shapiro SG, Cousins RJ (1979) Regulation of liver metallothionein and plasma zinc by the glucocorticoid, dexamethasone. Biochem Biophys Res Commun 89:1120–1126

    Google Scholar 

  • Evans GW, Majors PF, Cornatzer WE (1970) Mechanism for cadmium and zinc antagonism of copper metabolism. Biochem Biophys Res Commun 40:1142–1148

    PubMed  CAS  Google Scholar 

  • Evans GW, Grace CI, Votana HJ (1975) A proposed mechanism for zinc absorption in the rat. Am J Physiol 228:501–505

    PubMed  CAS  Google Scholar 

  • Faeder EJ, Chaney SQ, King LC, Hinners TA, Bruce R, Fowler BA (1977) Biochemical and ultrastructural changes in the livers of cadmium treated rats. Toxicol Appl Pharmacol 34:473–487

    Google Scholar 

  • Foulkes EC (1978 a) Renal tubular transport of cadmium metallothionein. Toxicol Appl Pharmacol 45:505–512

    PubMed  CAS  Google Scholar 

  • Foulkes EC (1978 b) Apparent competition between myoglobin and metallothionein for renal reabsorption. Proc Soc Exp Biol Med 159:321–323

    PubMed  CAS  Google Scholar 

  • Foulkes EC (1982) Tubular reabsorption of low molecular weight proteins. Physiologist 25:56–59

    PubMed  CAS  Google Scholar 

  • Fowler BA, Nordberg GF (1978) The renal toxicity of cadmium-metallothionein: morpho-metric and X-ray microanalytical studies. Toxicol Appl Pharmacol 46:609–623

    PubMed  CAS  Google Scholar 

  • Frazier JM (1980) Cadmium and zinc kinetics in rat plasma following intravenous injection. J Toxicol Environ Health 6:503–518

    PubMed  CAS  Google Scholar 

  • Frazier JM (1982) The role of metallothionein in the systemic distribution of cadmium. In: Foulkes EC (ed) Biological roles of metallothionein. Elsevier/North-Holland, Amsterdam, pp 141–153

    Google Scholar 

  • Frazier JM, Puglese J (1978) Dose dependence of cadmium kinetics in the rat liver following intravenous injection. Toxicol Appl Pharmacol 47:153–166

    Google Scholar 

  • Galdes A, Hill HAO, Bremner I, Young BW (1978 a) XH-NMR investigations on the structure of sheep metallothioneins. Biochem Biophys Res Commun 85:217–225

    PubMed  CAS  Google Scholar 

  • Galdes A, Vašák M, Hill HAO, Kägi JHR (1978 b)1H-NMR spectra of metallothioneins. FEBS Lett 92:17–21

    CAS  Google Scholar 

  • Gale TF (1973) The interactions of mercury with cadmium and zinc in mammalian embryonic development. Environ Res 6:95–105

    PubMed  CAS  Google Scholar 

  • Garner CD, Hasain SS, Bremner I, Bordas J (1982) An EXAFS study of the Zn sites in sheep liver metallothionein. J Inorg Biochem 16:253–256

    PubMed  CAS  Google Scholar 

  • Garvey JS, Chang CC (1981) Detection of circulating metallothionein in rats injected with zinc and cadmium. Science 214:805–807

    PubMed  CAS  Google Scholar 

  • Geller BL, Winge DR (1982) Metal binding sites of rat liver copper-metallothionein. Arch Biochem Biophys 213:109–117

    PubMed  CAS  Google Scholar 

  • Gerson RJ, Shaikh ZA (1982) Uptake and binding of cadmium and mercury to metallothionein in rat hepatocyte primary cultures. Biochem J 208:465–472

    PubMed  CAS  Google Scholar 

  • Gick G, McCarthy KS, McCarthy KS (1981) role of metallothionein synthesis in Cd and Zn-resistant CHO-KIM cells. Exp Cell Res 132:22–30

    Google Scholar 

  • Glanville N, Durnam DM, Palmiter RD (1981) Structure of mouse metallothionein-1 gene and its mRNA. Nature 292:267–269

    PubMed  CAS  Google Scholar 

  • Gunn SA, Gould TC (1970) Cadmium and other mineral elements. In: Johnson AD, Gomes WR, Van Denmark NL (eds) The testis. Acadmic, New York, pp 378–481

    Google Scholar 

  • Gunn SA, Gould TC, Anderson WAD (1965) Strain differences in susceptibility of mice and rats to cadmium induced testicular damage. J Reprod Fertil 10:273–278

    PubMed  CAS  Google Scholar 

  • Hall AC, Young BW, Bremner I (1979) Intestinal metallothionein and the mutual antagonism between copper and zinc in the rat. J Inorg Biochem 11:57–66

    PubMed  CAS  Google Scholar 

  • Hanlon DP, Sprecht C, Ferm VH (1982) The chemical status of cadmium in the placenta. Environ Res 27:89–94

    PubMed  CAS  Google Scholar 

  • Hart BA, Keating RF (1980) Cadmium accumulation and distribution in human lung fibroblasts. Chem Biol Interact 29:67–83

    PubMed  CAS  Google Scholar 

  • Hartmann H-J, Morpurgo L, Desideri A, Rotilio G, Weser U (1983) Reconstitution of stellacyanin as a case of direct Cu(I) transfer between yeast copper thionein and “blue” copper apoprotein. FEBS Lett 152:94–96

    PubMed  CAS  Google Scholar 

  • Hata A, Tsunoo H, Nakajima H, Kimura M (1978) Strain differences in susceptibility of mice to cadmium-induced metallothionein. Toxicol Lett 2:45–49

    CAS  Google Scholar 

  • Hata A, Tsunoo H, Nakajima H, Shintaku K, Kimura M (1980) Acute cadmium intoxication in inbred mice: a study on strain differences. Chem Biol Interact 32:29–39

    PubMed  CAS  Google Scholar 

  • Hew CL, Penner PE (1979) Cell-free synthesis of rat liver zine-thioneins. Can J Biochem 57:1050–1055

    Google Scholar 

  • Hicks DJ, Miya TS, Schnell RC (1976) Sex-related differences in cadmium toxicity in rats. Toxicol Appl Pharmacol 37:156

    Google Scholar 

  • Hildebrand CE, Cram LS (1979) Distribution of cadmium in human blood cultured in low levels of Cd Cl2. Accumulation of Cd in lymphocytes and preferential binding to metallothionein. Proc Soc Exp Biol Med 161:438–443

    PubMed  CAS  Google Scholar 

  • Holt DE, Webb M (1983) Intestinal and hepatic binding of cadmium in the neontal rat. Arch Toxicol 52:291–301

    PubMed  CAS  Google Scholar 

  • Johnson DR, Foulkes EC (1980) On the proposed role of metallothionein in the transport of cadmium. Environ Res 21:350–356

    Google Scholar 

  • Johnson WT, Evans GW (1980 a) Isolation of a (copper,zinc)-thionein from the small intestine of normal rats. Biochem Biophys Res Commun 96:10–17

    PubMed  CAS  Google Scholar 

  • Johnson WT, Evans GW (1980 b) Age dependent variation of copper in tissue and proteins of neonatal rat small intestine. Proc Soc Exp Biol Med 165:495–501

    Google Scholar 

  • Jones SG, Basinger NA, Jones MM, Gibbs SA (1982) A comparison of diethyldithiocarbamate and EDTA as antidotes for acute cadmium intoxication. Res Commun Chem Pathol Pharmacol 38:271–278

    PubMed  CAS  Google Scholar 

  • Kägi JHR, Nordberg M (1979) Metallothionein. Experientia [Suppl] 34:1–378

    Google Scholar 

  • Kägi JHR, Vallee BL (1960) Metallothionein: a cadmium and zinc containing protein from equine renal cortex. J Biol Chem 235:3460–3465

    PubMed  Google Scholar 

  • Kägi JHR, Vallee BL (1961) Metallothionein: a cadmium and zinc containing protein from equine renal cortex. II. Physicochemical properties. J Biol Chem 236:2435–2442

    PubMed  Google Scholar 

  • Karin MD, Herschman HR (1981) Induction of metallothionein in He La cells by dexa-methasone and zinc. Eur J Biochem 113:267–272

    PubMed  CAS  Google Scholar 

  • Karin MD, Richards RI (1982) Human metallothionein genes: molecular cloning and sequence analysis of the mRNA. Nucleic Acids Res 10:3165–3173

    PubMed  CAS  Google Scholar 

  • Karin MD, Andersen RD, Herschman HR (1981) Induction of metallothionein m-RNA in HeLa cells by dexamethasone and by heavy metals. Eur J Biochem 118:527–531

    PubMed  CAS  Google Scholar 

  • Kawai K, Kimura M (1975) Renal lesion after single injection of cadmium in rabbit. Ind Health 13:261–265

    CAS  Google Scholar 

  • Kello D, Dekanic D, Kostial K (1979 a) Influence of sex and dietary calcium on intestinal cadmium-absorption in rats. Arch Environ Health 34:30–33

    PubMed  CAS  Google Scholar 

  • Kello D, Sugawara N, Voner C, Foulkes EC (1979 b) On the role of metallothionein in cadmium absorption by rat jejunum in situ. Toxicology 14:199–208

    PubMed  CAS  Google Scholar 

  • Kern SR, Smith HA, Fontaine D, Bryan SE (1981) Partitioning of zinc and copper in liver subfractions: appearance of metallothionein-like proteins during development. Toxicol Appl Pharmacol 59:346–354

    PubMed  CAS  Google Scholar 

  • Klaassen CD (1978) Effect of metallothionein on hepatic disposition of metals. Am J Physiol 234:E47-E53

    PubMed  CAS  Google Scholar 

  • Klauser S, Kagi JHR, Wilson KJ (1983) Characterization of isoprotein patterns in tissue extracts and isolated samples of metallothioneins by reverse phase high pressure liquid chromatography. Biochem J 209:71–80

    PubMed  CAS  Google Scholar 

  • Koch J, Wielgus S, Shankara B, Saryan LA, Shaw F, Petering DH (1980) Zinc, copper and cadmium binding protein in Ehrlich ascites tumour cells. Biochem J 189:95–104

    PubMed  CAS  Google Scholar 

  • Kojima N, Young CR, Bates GW (1982) Failure of metallothionein to bind iron or act as an iron mobilizing agent. Biochim Biophys Acta 716:273–275

    PubMed  CAS  Google Scholar 

  • Kojima Y, Hamashima Y (1978) Immunohistologieal study of equine renal metallothionein. Acta Histochem Cytochem 11:205–211

    CAS  Google Scholar 

  • Kotsonis FN, Klaassen CD (1977 a) Comparison of methods for estimating hepatic metallothionein in rats. Toxicol Appl Pharmacol 42:583–588

    PubMed  CAS  Google Scholar 

  • Kotsonis FN, Klaassen CD (1977 b) Toxicity and distribution of cadmium at sublethal doses. Toxicol Appl Pharmacol 41:667–680

    PubMed  CAS  Google Scholar 

  • Kotsonis FN, Klaassen CD (1978) The relationship of metallothionein to the toxicity of cadmium after prolonged oral administration to rats. Toxicol Appl Pharmacol 46:39–54

    PubMed  CAS  Google Scholar 

  • Kotsonis FN, Klaassen CD (1979) Increase in hepatic metallothionein in rats treated with alkylating agents. Toxicol Appl Pharmacol 51:19–27

    PubMed  CAS  Google Scholar 

  • Kotsonis FN, Klaassen CD (1981) Metallothionein and its interactions with cadmium. In: Nriagu JO (ed) Cadmium in the environment. II. Health effects. Wiley & Sons, New York, pp 595–616

    Google Scholar 

  • Leber AP, Miya TS (1976) A mechanism for cadmium and zinc induced tolerance to cadmium thionein: involvement of metallothionein. Toxicol Appl Pharmacol 37:403–414

    PubMed  CAS  Google Scholar 

  • Levin AA, Miller RK (1980) Fetal toxicity of cadmium in the rat: maternal vs. fetal injections. Teratology 22:1–5

    PubMed  CAS  Google Scholar 

  • Leyton WM, Ferm VH (1980) Protection against cadmium-induced limb malformations by pretreatment with cadmium or mercury. Teratology 21:357–360

    Google Scholar 

  • Li T-Y, Kraker AJ, Shaw CF, Petering DH (1980) Ligand substitution reaction of metallothioneins with EDTA and apocarbonie anhydrase. Proc Natl Acad Sci USA 77:6334–6338

    PubMed  CAS  Google Scholar 

  • Louwerys BR, Roels AA, Buchet J-P, Bernard A, Stanescu D (1979) Investigation of the lung and kidney function in workers exposed to cadmium. Environ Health Perspect 28:137–145

    Google Scholar 

  • Lucis OJ, Lucis R (1969) Distribution of cadmium-109 and zinc-65 in mice of inbred strains. Arch Environ Health 18:307

    PubMed  CAS  Google Scholar 

  • Lucis OJ, Lucis R, Shaikh ZA (1972) Cadmium and zinc in pregnancy and lactation. Arch Environ Health 25:14–22

    PubMed  CAS  Google Scholar 

  • Madapallimatam G, Riordan JR (1977) Antibodies to the low molecular weight copper binding proteins from liver. Biochem Biophys Res Commun 77:1286–1293

    PubMed  CAS  Google Scholar 

  • Magos L, Webb M (1983) The influence of weight and other physiological changes during pregnancy and lactation on the toxicities of mercury and cadmium. In: Clarkson T, Nordberg G (eds) Reproductive and developmental toxicity of metals. Plenum, New York, pp 417–436

    Google Scholar 

  • Margoshes M, Yallee BL (1957) A cadmium protein from equine kidney cortex. J Am Chem Soc 79:4813–4814

    CAS  Google Scholar 

  • Mason R (1982) Metabolism of cadmium in the neonate: effect of hepatic zinc, copper and metallothionein concentrations on the uptake of cadmium in the rat liver. Biochem Pharmacol 31:1761–1764

    PubMed  CAS  Google Scholar 

  • Mason R, Bakka A, Samarawickrama GP, Webb M (1981 a) Metabolism of zinc and copper in the neonate: accumulation and function of (Zn,Cu)-metallothionein in the liver of the newborn rat. Br J Nutr 45:375–389

    PubMed  CAS  Google Scholar 

  • Mason R, Brady FO, Webb M (1981 b) Metabolism of zinc and copper in the neonate: accumulation of copper in the gastrointestinal tract of the newborn rat. Br J Nutr 45:391–399

    PubMed  CAS  Google Scholar 

  • Maunsbach AB (1966) Absorption of 1–125 labelled homologous albumin by rat kidney proximal tubular cells. J Ultrastruct Res 15:197–241

    PubMed  CAS  Google Scholar 

  • McGivern J, Mason J (1979) The effect of chelation on the fate of intravenously administered cadmium in rats. J Comp Pathol 89:1–9

    PubMed  CAS  Google Scholar 

  • Means JR, Carlson SP, Schnell RC (1979) Studies on the mechanism of cadmium-induced inhibition of hepatic microsomal monooxygenase system in the male rat. Toxicol Appl Pharmacol 48:293–304

    PubMed  CAS  Google Scholar 

  • Mehra RK, Bremner I (1983) Development of a radioimmunoassay for rat liver metallothionein-1 and its application to the analysis of rat plasma and kidneys. Biochem J 213:459–465

    PubMed  CAS  Google Scholar 

  • Mehra RK, Bremner I (1984) Metallothionein-I in the plasma and liver of neonatal rats. Biochem J 217:859–862

    PubMed  CAS  Google Scholar 

  • Meisler M, Orlowski C, Gross E, Bloor JH (1979) Cadmium metabolism in cdm/cdm mice. Biochem Gen 17:731–736

    CAS  Google Scholar 

  • Mercer J, Stevenson T, Camakaris J, Lazdins I, Danks DM (1982) Metallothionein mRNA in neonatal and adult livers. In: Gawthorne JM, Howell JMcC, White CL (eds) Trace element metabolism in man and animals-4. Springer, Berlin Heidelberg New York, pp 649–651

    Google Scholar 

  • Mills CF, Dalgarno AC (1972) Copper and zinc status of ewes and lambs receiving increased dietary concentrations of cadmium. Nature 239:171–173

    PubMed  CAS  Google Scholar 

  • Minkel DT, Poulson K, Wielgus S, Shaw CF, Petering DH (1980) On the sensitivity of metallothioneins to oxidation during isolation. Biochem J 191:475–485

    PubMed  CAS  Google Scholar 

  • Morpurgo L, Hartmann HJ, Desideri A, Weser U, Rotilio G (1983) Yeast copper-thionein can reconstitute the Japanese lacquer-tree (Rhus vernicifera) laccase from the type-2-copper depeleted enzyme via a direct Cu(I) transfer mechanism. Biochem J 211:515–517

    PubMed  CAS  Google Scholar 

  • Morselt AFW, Copius-Peereboom-Stegeman JHJ, Puvion E, Maarschalkerweerd VJ (1983) Investigation of the mechanism of cadmium toxicity at the cellular level. Arch Toxicol 52:99–108

    PubMed  CAS  Google Scholar 

  • Murakami M, Webb M (1981) A morphological and biochemical study of the effects of L-cysteine on the renal uptake and nephrotoxicity of cadmium. Br J Exp Pathol 62:115–130

    PubMed  CAS  Google Scholar 

  • Murakami M, Cain K, Webb M (1983 a) Cadmium-metallothionein-induced nephropathy: a morphological and autoradiographical study of cadmium distribution, the development of tubular damage and subsequent cell regeneration. J Appl Toxicol 5:237–244

    Google Scholar 

  • Murakami M, Tohyama C, Sano K, Kawamura R, Kubota K (1983 b) Autoradiographic studies on the localization of metallothionein in proximal tubular cells in the kidneys of rats. Arch Toxicol 53:185–192

    PubMed  CAS  Google Scholar 

  • Neathery MW (1981) Metabolism and toxicity of cadmium in animals. In: Nriagu JO (ed) Cadmium in the environment. II. Health effects. Wiley, New York, p 560

    Google Scholar 

  • Nicholson JK, Sadler PJ, Cain K, Holt DE, Webb M, Hawkes GE (1983) 88MHz 113Cd-nmr studies of native rat liver metallothioneins. Biochem J 211:251–255

    PubMed  CAS  Google Scholar 

  • Nomiyama K, Foulkes EC (1977) Reabsorption of filtered Cd MT in the rabbit kidney. Proc Soc Exp Biol Med 156:97–99

    PubMed  CAS  Google Scholar 

  • Nomiyama K, Nomiyama H (1982) Tissue metallothioneins in rabbits chronically exposed to cadmium, with special reference to the critical concentration of cadmium in the renal cortex. In: Foulkes EC (ed) Biological roles of metallothionein. Elsevier/North-Hol-land, Amsterdam, pp 47–67

    Google Scholar 

  • Nordberg GF (1971) Effects of acute and chronic cadmium exposure on the testicles of mice with special reference to the protective effects of metallothionein. Environ Physiol 1:171–182

    CAS  Google Scholar 

  • Nordberg GF (1972) Cadmium metabolism and toxicity. Environ Physiol Biochem 2:7–36

    CAS  Google Scholar 

  • Nordberg GF, Goyer R, Nordberg M (1975) Comparative toxicity of cadmium-metallo-thionein and cadmium chloride on mouse kidney. Arch Pathol 99:192–197

    PubMed  CAS  Google Scholar 

  • Nordberg M, Elinder C-G, Rahnster B (1979) Cadmium, zinc and copper in horse kidney metallothionein. Environ Res 20:341–350

    PubMed  CAS  Google Scholar 

  • Oberdörster G, Kördel W (1981) Metallothionein content in lung after chronic CdO and ZnO inhalation in rats. In: International conference heavy metals in the environment. CEP Consultants, Edinburgh, pp 502–505

    Google Scholar 

  • Oh SH, Whanger PD (1979) Biological function of metallothionein. VII. Effect of age on its metabolism in rats. Am J Physiol 237:E18-E22

    PubMed  CAS  Google Scholar 

  • Ohsawa M, Fukada K (1976) Enhancement by phénobarbital of the biliary excretion of methylmercury and cadmium in rats. Ind Health 14:7–14

    Google Scholar 

  • Ohtaki H, Koga M (1979) Purification and characterization of zinc-binding protein from the liver of the partially hepatectomized rat. Biochem J 183:683–690

    Google Scholar 

  • Ohtaki H, Hasegawa K, Koga M (1978) Zinc binding protein in the livers of neonatal, normal and partially hepatectomized rats. Biochem J 174:999–1005

    Google Scholar 

  • Olafson RW, Sim RG (1979) An electrochemical approach to the characterization of metallothioneins. Anal Biochem 100:343–351

    PubMed  CAS  Google Scholar 

  • Onosaka S, Cherian MG (1981) Induced synthesis of metallothionein in various tissues of rats in response to metals. I. Repeated cadmium injection. Toxicology 22:91–101

    PubMed  CAS  Google Scholar 

  • Onosaka S, Cherian MG (1982 a) Comparison of metallothionein determination by Polarographie and cadmium-saturation methods. Toxicol Appl Pharmacol 63:270–274

    PubMed  CAS  Google Scholar 

  • Onosaka S, Cherian MG (1982 b) Induced synthesis of metallothionein in various tissues of rats in response to metals. II. Influence of zinc status and specific effect on pancreatic metallothionein. Toxicology 23:11–20

    PubMed  CAS  Google Scholar 

  • Otvos JD, Armitage IM (1979) 113Cd NMR of metallothionein. Direct evidence for the existence of polynuclear metal binding sites. J Am Chem Soc 101:7734–7736

    CAS  Google Scholar 

  • Otvos JD, Armitage IM (1980) Structure of the metal clusters in rabbit liver metallothionein. Proc Natl Acad Sci USA 77:7094–7098

    PubMed  CAS  Google Scholar 

  • Otvos JD, Olafson RW, Armitage IM (1982) Structure of an invertebrate metallothionein from Scylla serrata. J Biol Chem 257:2427–2431

    PubMed  CAS  Google Scholar 

  • Pařízek J (1964) Vascular changes at sites of oestrogen biosynthesis produced by parenteral injection of cadmium salts: the destruction of the placenta by cadmium salts. J Reproduct Fertil 7:263–265

    Google Scholar 

  • Pařízek J (1965) The peculiar toxicity of cadmium during pregnancy - an experimental toxaemia of pregnancy induced by cadmium salts. J Reprod Fertil 9:111–112

    PubMed  Google Scholar 

  • Parzyck DC, Shaw SM, Kessler WV, Vetter RJ, Van Sickle DC, Meyer RA (1978) Fetal effects of cadmium in pregnant rats on normal and zinc-deficient diets. Bull Environ Contam Toxicol 19:206–214

    PubMed  CAS  Google Scholar 

  • Pence DH, Miya TS, Schnell RC (1977) Cadmium alteration of hexabarbital action: sex related differences in the rat. Toxicol Appl Pharmacol 39:89–96

    PubMed  CAS  Google Scholar 

  • Petering HG, Murthy L, Sorenson JRL, Levin L, Stemner KL (1979) Effect of sex on oral cadmium dose responses in rats: blood pressure and pharmacodynamics. Environ Res 20:289–299

    PubMed  CAS  Google Scholar 

  • Piotrowski JK, Bolanowska W, Sapota A (1973) Evaluation of metallothionein content in animal tissues. Acta Biochim Pol 20:207–215

    PubMed  CAS  Google Scholar 

  • Piscator M (1964) On cadmium in normal human kidney together with a report on the isolation of metallothionein from the livers of cadmium-exposed rats. Nord Hyg Tidskr 45:76–82

    PubMed  CAS  Google Scholar 

  • Piscator M, Lund B (1972) Cadmium, zinc, copper and lead in human renal cortex. Arch Environ Health 24:426–431

    PubMed  CAS  Google Scholar 

  • Post CL, Squibb KS, Fowler BA, Gardner DE, Illing J, Hook GER (1982) Production of low molecular weight cadmium-binding proteins in rabbit lung following exposure to cadmium chloride. Biochem Pharmacol 31:2969–2975

    PubMed  CAS  Google Scholar 

  • Prigge E (1978) Early signs of oral and inhalative cadmium uptake in rats. Arch Toxicol 40:231–247

    PubMed  CAS  Google Scholar 

  • Prins HW, Van den Hamer C (1981) Degradation of 35S-labelled metallothionein in the liver and kidney of brindled mice; model for Menkes’ disease. Life Sci 28:2953–2959

    PubMed  CAS  Google Scholar 

  • Prins HW, Van den Hamer C (1982) Copper metallothionein metabolism in the kidney of brindled mice. In: Gawthorne JM, Howell JMcC, White CL (eds) Trace element metabolism in man and animals-4. Springer, Berlin Heidelberg New York, pp 645–648

    Google Scholar 

  • Probst AS, Bousquet WF, Miya TS (1977) Correlation of hepatic metallothionein with acute cadmium toxicity in the mouse. Toxicol Appl Pharmacol 39:61–69

    PubMed  CAS  Google Scholar 

  • Raghaven SRV, Gonick HC (1980) Experimental Fanconi syndrome. IV. Effect of repeated injections of cadmium on tissue distribution and protein binding of cadmium. Miner Electrolyte Metab 3:36–43

    Google Scholar 

  • Richards MP, Cousins RJ (1976) Metallothionein and its relationship to the metabolism of dietary zinc in rats. J Nutr 106:1591–1599

    PubMed  CAS  Google Scholar 

  • Ridlington JW, Winge DR, Fowler BA (1981) Long term turnover of cadmium-metallo-thionein in liver and kidney following a single low dose of cadmium. Biochim Biophys Acta 673:177–183

    PubMed  CAS  Google Scholar 

  • Riordan JR, Richards V (1980) Human fetal liver contains both zinc and copper-rich forms of metailothionein. J Biol Chem 255:5380–5383

    PubMed  CAS  Google Scholar 

  • Roberts SA, Sehnell RC (1981) Tolerance development to cadmium-induced decrease in hepatic oxidative xenobiotic metabolism and cytochrome content in the male rat. Fundam Appl Toxicol 1:286–289

    PubMed  CAS  Google Scholar 

  • Roberts SA, Sehnell RC (1982) Cadmium-induced inhibition of hepatic drug oxidation in the rat: time dependence of tolerance development and metallothionein synthesis. Toxicol Appl Pharmacol 64:42–51

    PubMed  CAS  Google Scholar 

  • Rogers K, Cherian MG (1981) Toxicity of cadmium metallothionein in rat kidney cell culture. Toxicologist 1:82

    Google Scholar 

  • Rohrer SR, Shaw SM, Born GS, Vetter RJ (1978) The maternal distribution and placental transfer of cadmium in zinc-deficient rats. Bull Environ Contam Toxicol 19:556–563

    PubMed  CAS  Google Scholar 

  • Rydén L, Deutsch HF (1978) Preparation and properties of the major copper-binding component of human fetal liver. J Biol Chem 253:519–524

    PubMed  Google Scholar 

  • Sabbioni E, Marafante E (1975) Accumulation of cadmium in rat liver cadmium binding protein following single and repeated cadmium administration. Environ Physiol Biochem 5:465–473

    PubMed  CAS  Google Scholar 

  • Sabbioni E, Marafante E, Pietra R, Amantini L, Ubertalli L (1979) Long-term, low level exposure experiments by nuclear and radiochemical techniques. A two years accumulation study of cadmium in rat tissues. In: Anke M, Schneider H-J (eds) Kadmium symposium. Friedrich Schiller University, Jena, pp 111–116

    Google Scholar 

  • Sadler PJ, Bakka A, Benyon PJ (1978) 113Cd nmr of metallothionein. FEBS Lett 94:315–318

    CAS  Google Scholar 

  • Samarawickrama GP (1979) Biological effects of cadmium in mammals. In: Webb M (ed) The chemistry, biochemistry and biology of cadmium. Elsevier/North-Holland, Amsterdam, pp 341–421

    Google Scholar 

  • Samarawickrama GP, Webb M (1981) The acute toxicity and teratogenicity of cadmium in the pregnant rat. J Appl Toxicol 1:264–269

    PubMed  CAS  Google Scholar 

  • Sasser LB, Jarboe GE (1977) Intestinal absorption and retention of cadmium in neonatal rats. Toxicol Appl Pharmacol 41:423–431

    PubMed  CAS  Google Scholar 

  • Sasser LB, Jarboe GE (1980) Intestinal absorption and retention of cadmium in neonatal pigs, compared to rats and guinea-pigs. J Nutr 110:1641–1647

    PubMed  CAS  Google Scholar 

  • Sato M, Nagai Y (1980) Mode of existence of cadmium in rat liver and kidney after prolonged subcutaneous administration. Toxicol Appl Pharmacol 54:90–99

    PubMed  CAS  Google Scholar 

  • Sato M, Nagai Y (1982) Renal damage and form of cadmium in sub-cellular fractions. In: Foulkes EC (ed) Biological roles of metallothionein. Elsevier/North-Holland, Amsterdam, pp 163–179

    Google Scholar 

  • Schmidt J (1936) Organic chemistry. Gurney and Jackson, London, p 670

    Google Scholar 

  • Sehnell RC, Means JR, Roberts SA, Pence DH (1979) Studies on cadmium-induced inhibition of hepatic microsomal drug biotransformation in the rat. Environ Health Perspect 28:273–279

    Google Scholar 

  • Sciortino CV, Failla ML, Bullis DB (1982) Identification of metallothionein in parenchymal and non-parenchymal liver cells of the adult rat. Biochem J 204:509–514

    PubMed  CAS  Google Scholar 

  • Selenke W, Foulkes EC (1981) Binding of cadmium metallothionein to isolated renal brush border membranes. Proc Soc Exp Biol Med 167:40–44

    PubMed  CAS  Google Scholar 

  • Shaikh ZA, Hirayama K (1979) Metallothionein in the extracellular fluids as an index of cadmium toxicity. Environ Health Perspect 28:267–271

    PubMed  CAS  Google Scholar 

  • Shapiro SG, Cousins RJ (1980) Induction of rat liver metallothionein mRNA and its distribution between free and membrane-bound polyribosomes. Biochem J 190:755–764

    PubMed  CAS  Google Scholar 

  • Singh K, Nath R (1972) Studies on the identification of the cadmium-binding protein in rat testis. Biochem J 128:48P

    Google Scholar 

  • Singh K, Nath R, Chakrarti RN (1974) Isolation and characterization of cadmium-binding protein from rat testes. J Reprod Fertil 36:257–265

    PubMed  CAS  Google Scholar 

  • Smith KT, Cousins RJ (1979) Quantitative aspects of Zn absorption by isolated vascularly perfused rat intestine. J Nutr 110:316–323

    Google Scholar 

  • Sokolowski G, Pilz W, Weser U (1974) X-ray photoelectron spectroscopic properties of Hg-thionein. FEBS Lett 48:222–225

    PubMed  CAS  Google Scholar 

  • Sonowane BR, Nordberg M, Nordberg GF, Lucier GW (1975) Placental transfer of cadmium in rats: influence of dose and gestational age. Environ Health Perspect 12:97–102

    Google Scholar 

  • Squibb KS, Cousins RJ, Silbon BL, Levin S (1976) Liver and intestinal metallothionein-function in acute cadmium toxicity. Exp Mol Pathol 25:163–171

    PubMed  CAS  Google Scholar 

  • Squibb KS, Ridlington JW, Carmichael NG, Fowler BA (1979) Early cellular effects of circulating cadmium-thionein on kidney proximal tubules. Environ Health Perspect 28:287–296

    PubMed  CAS  Google Scholar 

  • Squibb KS, Pritchard JB, Fowler BA (1982) Renal metabolism and toxicity of metallothionein. In: Foulkes EC (ed) Biological roles of metallothionein. Elsevier/North-Holland, Amsterdam, pp 181–192

    Google Scholar 

  • Starcher BC (1969) Studies on the mechanism of copper absorption in the chick. J Nutr 97:321–326

    PubMed  CAS  Google Scholar 

  • Starcher BC, Glauber JC, Madaras JG (1980) Zinc absorption and its relationship to intestinal metallothionein. J Nutr 110:1391–1397

    PubMed  CAS  Google Scholar 

  • Stonard MD, Webb M (1976) Influence of dietary cadmium on the distribution of the essential metals copper, zinc and iron in tissues of the rat. Chem Biol Interact 15:349–363

    PubMed  CAS  Google Scholar 

  • Suda T, Horinchi N, Ogata E, Ezawa I, Otaki N, Kimura M (1974) Prevention by metallothionein of cadmium-induced inhibition of vitamin A activation reaction in kidney. FEBS Lett 42:23–26

    PubMed  CAS  Google Scholar 

  • Sugawara N (1977) Influence of cadmium on zinc distribution in the mouse liver and kidney: role of metallothionein. Toxicol Appl Pharmacol 42:377–386

    PubMed  CAS  Google Scholar 

  • Suzuki KT (1979) Copper content in cadmium exposed animal kidney metallothioneins. Arch Environ Contam Toxicol 8:255–268

    PubMed  CAS  Google Scholar 

  • Suzuki KT (1980) Direct connection of high speed liquid chromatograph, equipped with gel-permeation column, to atomic absorption spectrophotometer for metalloprotein analysis: metallothionein. Anal Biochem 102:31–34

    PubMed  CAS  Google Scholar 

  • Suzuki KT (1982) Induction and degradation of metallothionein and their relation to the toxicity of cadmium. In: Foulkes EC (ed) Biological roles of metallothionein. Elsevier/ North-Holland, Amsterdam, pp 215–235

    Google Scholar 

  • Suzuki KT, Maitana T (1979) Fate of i.p. injected liver metallothionein in rat kidney. Chem Pharm Bull 27:647–653

    PubMed  CAS  Google Scholar 

  • Suzuki KT, Takenaka S (1979) Fate of kidney metallothionein i.p. injected into the rat. Chem Pharm Bull 27:1753–1758

    PubMed  CAS  Google Scholar 

  • Suzuki KT, Yamamura M (1979) Gel and anion exchange chromatographic properties of copper-containing metallothioneins. Arch Environ Contam Toxicol 8:471–485

    PubMed  CAS  Google Scholar 

  • Suzuki KT, Yamamura M (1980 a) Isolation and characterization of metallothionein dimers. Biochem Pharmacol 29:689–692

    PubMed  CAS  Google Scholar 

  • Suzuki KT, Yamamura M (1980 b) Changes of metal contents and isometallothionein levels in rat tissues after cadmium loading. Biochem Pharmacol 29:2407–2412

    PubMed  CAS  Google Scholar 

  • Suzuki KT, Yamamura M (1980 c) Induction of zinc-thionein in rat liver and kidneys by zinc loading as studied at isometallothionein level. Toxicol Lett 6:59–65

    PubMed  Google Scholar 

  • Suzuki KT, Yamamura M (1980d) Rat kidney metallothionein induced by injection of Cdthionein: changes in chromatographic properties with time and their relation to copper content and kidney dysfunction. Toxicol Lett 5:131–138

    PubMed  CAS  Google Scholar 

  • Suzuki KT, Takenaka S, Kubota K (1979) Fate and comparative toxicity of metallothioneins with different Cd:Zn ratios in rat kidney. Arch Environ Contam Toxicol 8:85–95

    PubMed  Google Scholar 

  • Suzuki KT, Yamamura M, Yamada YK, Shimizu F (1981) Distribution of cadmium in heavy cadmium-accumulated rat liver cytosols: metallothioneins and related cadmiumbinding proteins. Toxicol Lett 8:105–114

    PubMed  CAS  Google Scholar 

  • Suzuki S, Taguchi T (1970) Sex difference of cadmium contents in urine spot tests. Ind Health 8:150–152

    CAS  Google Scholar 

  • Suzuki Y, Yoshikawa H (1974) Role of metallothionein in the liver in protection against cadmium toxicity. Ind Health 12:141–151

    CAS  Google Scholar 

  • Taguchi T, Nakamura K (1982) Isolation and properties of cadmium-binding proteins induced in rat small intestine by oral administration of cadmium. J Toxicol Environ Health 9:401–409

    PubMed  CAS  Google Scholar 

  • Taguchi T, Suzuki S (1981) Influence of sex and age on the biological half-life of cadmium in mice. J Toxicol Environ Health 7:239–249

    PubMed  CAS  Google Scholar 

  • Tanaka K (1982) Effect of hepatic disorder on the fate of cadmium in rats. In: Foulkes EC (ed) Biological roles of metallothionein. Elsevier/North-Holland, Amsterdam, pp 237–249

    Google Scholar 

  • Tanaka K, Sueda K, Okahara K (1974) Fate of heavy metals in animals: quantitative change of metallothionein in the liver, kidney and intestinal mucosa of rat after a single injection of 109CdCl2. J Hyg Chem 20:98–101

    CAS  Google Scholar 

  • Tanaka K, Sueda K, Onasaka S, Okahara K (1975) Fate of 109Cd labelled metallothionein in rats. Toxicol Appl Pharmacol 33:258–266

    PubMed  CAS  Google Scholar 

  • Tanaka K, Onosaka S, Doi M, Okahara K (1977) Substitution of zinc bound to metallothionein for cadmium in vitro and in vivo. J Hyg Chem 23:229–234

    CAS  Google Scholar 

  • Taylor BA, Heiniger HJ, Meier H (1973) Genetic analysis of resistance to cadmium-in-duced testicular damage in mice. Proc Soc Exp Biol Med 143:629–633

    PubMed  CAS  Google Scholar 

  • Terhaar CJ, Vis E, Roudabush RL, Fassett DW (1965) Protective effects by low doses of cadmium chloride against subsequent oral doses in rats. Toxicol Appl Pharmacol 7:500

    Google Scholar 

  • Tohyama C, Shaikh ZA (1978) Cross reactivity of metallothioneins from different origins with rabbit and rat hepatic metallothionein antibody. Biochem Biophys Res Commun 84:907–913

    PubMed  CAS  Google Scholar 

  • Tohyama C, Shaikh ZA (1981) Metallothionein in plasma and urine of cadmium exposed rats determined by a single antibody radioimmunoassay. Fundam Appl Toxicol 1:1–7

    PubMed  CAS  Google Scholar 

  • Tohyama C, Shaikh ZA, Nogawa K, Kobayashi E, Honda R (1982) Urinary metallothionein as a new index of renal dysfunction in itai itai disease patients and other Japanese women environmentally exposed to cadmium. Arch Toxicol 50:159–166

    PubMed  CAS  Google Scholar 

  • Tsunoo H, Nakajima H, Hata A, Kimura M (1979) Genetic influence on induction of metallothionein and mortality from cadmium intoxication. Toxicol Lett 4:253–256

    CAS  Google Scholar 

  • Udom AO, Brady FO (1980) Reactivation in vitro of zinc-requiring apo-enzymes by rat liver zinc-metallothionein. Biochem J 187:329–335

    PubMed  CAS  Google Scholar 

  • Vallee BL (1979) Metallothionein: historical review and perspectives. Experientia [Suppl] 34:19–40

    CAS  Google Scholar 

  • Vander Mallie RJ, Garvey JS (1978) Production and study of antibody produced against rat cadmium-thionein. Immunochemistry 15:857–858

    Google Scholar 

  • Vander Mallie RJ, Garvey JS (1979) Radioimmunoassay of metallothioneins. J Biol Chem 254:8416–8421

    Google Scholar 

  • Vašák M, Galdes A, Hill HAO, Kagi JHR, Bremner I, Young BW (1980) Investigation of the structure of metallothionein by proton nuclear magnetic resonance spectroscopy. Biochemistry 19:416–425

    Google Scholar 

  • Vašák M, Kägi JHR, Hill HAO (1981) Zinc (II), cadmium (II) and mercury (II) transitions in metallothionein. Biochemistry 20:2852–2856

    PubMed  Google Scholar 

  • Waalkes MP, Thomas J A, Bell JU (1982) Induction of hepatic metallothionein in the rabbit fetus following maternal cadmium exposure. Toxicol Appl Pharmacol 62:211–218

    PubMed  CAS  Google Scholar 

  • Waalkes MP, Chernoff SB, Klaassen CD (1984) Cadmium-binding proteins of rat testes. Characterization of a low-molecular-mass protein that lacks identity with metallothionein. Biochem J 220:811–818

    PubMed  CAS  Google Scholar 

  • Wada O, Miyahara A, Manabe S, Matsui H, Ono T (1982) Effect of acute administration of cadmium on the distribution of zinc in the hamster. J Toxicol Environ Health 9:509–513

    PubMed  CAS  Google Scholar 

  • Waku K, Hayakawa F, Nakazawa Y (1980) Effects of Cd2+ and Cd MT on the activities of phospholipid synthesizing enzymes of rat liver microsomes in vitro. Ann Biochem Biophys 204:288–293

    CAS  Google Scholar 

  • Webb M (1972 a) Binding of cadmium ions by rat liver and kidney. Biochem Pharmacol 21:2751–2765

    PubMed  CAS  Google Scholar 

  • Webb M (1972 b) Persistence of stored Cd2 + in the livers and kidneys of female rats during pregnancy. J Reprod Fertil 30:99–103

    PubMed  CAS  Google Scholar 

  • Webb M (1979 a) The metallothioneins. In: Webb M (ed) The chemistry, biochemistry and biology of cadmium. Elsevier/North-Holland, Amsterdam, pp 195–266

    Google Scholar 

  • Webb M (1979 b) Interactions of cadmium with cellular components. In: Webb M (ed) The chemistry, biochemistry and biology of cadmium. Elsevier/North-Holland, Amsterdam, pp 285–340

    Google Scholar 

  • Webb M (1979c) Cadmium-thionein and the nephrotoxicity of cadmium. In: Anke M, Schneider H-J (eds) Kadium symposium. Friedrich Schiller University, Jena, pp 101–107

    Google Scholar 

  • Webb M (1982) Role of metallothioneins and other binding proteins in the renal handling and toxicity of metals. In: Bach PH, Bonner FW, Bridges JW, Lock EA (eds) Nephrotoxicity assessment and pathogenesis. Wiley, New York, pp 296–309

    Google Scholar 

  • Webb M (1983) Endogenous metal binding proteins in the control of zinc, copper, cadmium and mercury metabolism during prenatal and postnatal development. In: Clarkson T, Nordberg G (eds) Reproductive and developmental toxicity of metals. Plenum, New York, pp 655–674

    Google Scholar 

  • Webb M, Cain K (1982) Functions of metallothionein. Biochem Pharmacol 31:137–142

    PubMed  CAS  Google Scholar 

  • Webb M, Etienne AT (1977) Studies on the toxicity and metabolism of cadmiumthionein. Biochem Pharmacol 26:25–30

    PubMed  CAS  Google Scholar 

  • Webb M, Holt D (1982) Endogenous metal binding proteins in relation to the differences in absorption and distribution of mercury in newborn and adult rats. Arch Toxicol 49:237–245

    PubMed  CAS  Google Scholar 

  • Webb M, Magos L (1976) Cadmium-thionein and the protection by cadmium against the nephrotoxicity of mercury. Chem Biol Interact 14:357–369

    PubMed  CAS  Google Scholar 

  • Webb M, Samarawickrama GP (1981) Placental transport and embryonic utilization of essential metabolites in the rat at the teratogenic dose of cadmium. J Appl Toxicol 1:270–277

    PubMed  CAS  Google Scholar 

  • Webb M, Verschoyle RD (1976) An investigation of the role of metallothioneins in protection against the acute toxicity of the cadmium ion. Biochem Pharmacol 25:673–679

    PubMed  CAS  Google Scholar 

  • Webster WS (1979 a) Iron deficiency and its role in cadmium-induced fetal growth retardation. J Nutr 109:1640–1645

    PubMed  CAS  Google Scholar 

  • Webster WS (1979 b) Cadmium-induced fetal growth retardation in mice and the effect of dietary supplement of zinc, copper, iron and selenium. J Nutr 109:1646–1651

    PubMed  CAS  Google Scholar 

  • Weser U, Rupp H (1979) Physicochemical properties of metallothioneins. In: Webb M (ed) The chemistry, biochemistry and biology of cadmium. Elsevier/North-Holland, Amsterdam, pp 267–283

    Google Scholar 

  • Whanger PD, Ridlington JW, Holcomb CL (1980) Interrelations of zinc and selenium on the binding of cadmium to rat tissue proteins. Ann NY Acad Sci 355:333–346

    PubMed  CAS  Google Scholar 

  • Winge DR, Miklossy KA (1982 a) Differences in the pleomorphic forms of metallothionein. Arch Biochem Biophys 214:80–88

    PubMed  CAS  Google Scholar 

  • Winge DR, Miklossy KA (1982 b) Domain nature of metallothionein. J Biol Chem 257:3471–3476

    PubMed  CAS  Google Scholar 

  • Winge DR, Premakumar R, Rajagopalan KV (1975) Metal induced formation of metallothionein in rat liver. Arch Biochem Biophys 170:242–252

    PubMed  CAS  Google Scholar 

  • Winge DR, Premakumar R, Rajagopalan KV (1978) Studies on the zinc content of cadmium-induced thionein. Arch Biochem Biophys 188:466–475

    PubMed  CAS  Google Scholar 

  • Wolkowski RM (1974) Differential cadmium induced embryo toxicity in two inbred mouse strains. I. Analysis of inheritance of the response to cadmium and the presence of cadmium in fetal and placental tissue. Teratology 10:243–261

    PubMed  CAS  Google Scholar 

  • Wong K-L, Klaassen CD (1979) Isolation and characterization of metallothionein which is highly concentrated in newborn rat liver. J Biol Chem 259:12399–12403

    Google Scholar 

  • Wong K-L, Klaassen CD (1980 a) Tissue distribution and retention of cadmium in rats during post natal development, minimal role of hepatic metallothionein. Toxicol Appl Pharmacol 53:343–353

    PubMed  CAS  Google Scholar 

  • Wong K-L, Klaassen CD (1980 b) Age differences in susceptibility to cadmium-induced testicular damage in rats. Toxicol Appl Pharmacol 55:456–466

    PubMed  CAS  Google Scholar 

  • Yoshida A, Kaplan BE, Kimura M (1979) Metal binding and detoxification, effect of synthetic oligopeptides containing three cysteinyl residues. Proc Natl Acad Sci USA 76:486–490

    PubMed  CAS  Google Scholar 

  • Yoshikawa H (1970) Preventive effect of pretreatment with low doses of metals on the acute toxicity of metals in mice. Ind Health 8:184–191

    CAS  Google Scholar 

  • Yoshikawa H, Suzuki Y (1976) Cadmium distribution and metallothionein in the livers of mice treated with phenobarbital. Ind Health 14:103–108

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Webb, M. (1986). Role of Metallothionein in Cadmium Metabolism. In: Foulkes, E.C. (eds) Cadmium. Handbook of Experimental Pharmacology, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70856-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70856-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70858-9

  • Online ISBN: 978-3-642-70856-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics