Advertisement

Insect Aging pp 90-105 | Cite as

Brain Aging in Insects

  • M. J. Kern

Abstract

The role of the central nervous system (CNS) in the modulation of homeostatic mechanisms and the aging process especially in mammals, has been well investigated by several authors (Blumenthal 1970, Ordy and Brizzee 1975, Hoffmeister and Müller 1979, Samorajski 1980, Buschmann 1982, Hoyer 1982, Frolkis et al. 1984). In insects the crucial role of the CNS in developmental processes is well established; however, it is an open question whether the brain also governs the aging processes.

Keywords

Aging Process Flight Muscle Musca Domestica Adult Life Span Neurosecretory Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babers FH, Pratt JJ (1950) Studies on the resistance of insects to insecticides I. Cholinesterase in house flies (Musca domestica) resistant to DDT. Physiol Zool 23:58–63PubMedGoogle Scholar
  2. Becker HW (1965) The number of neurons, glial and perineurium cells in an insect ganglion. Experientia 21:719CrossRefGoogle Scholar
  3. Bieber M, Fuldner D (1979) Brain growth during the adult stage of a holometabolous insect. Naturwissenschaften 66:426CrossRefGoogle Scholar
  4. Blumenthal HT (1970) The regulatory role of the nervous system in aging. Interdiscip Top Gerontol 7:1Google Scholar
  5. Brandt E (1879) Vergleichend-anatomische Untersuchungen des Nervensystems der Käfer (Coleoptera). Horae Soc Entomol Ross 15:31–101Google Scholar
  6. Burrows M (1980) Principles of organization of insect central nervous systems. In: Sherwood (ed) Insect neurobiology and pesticide action. Soc Chem Industry, London, p 5Google Scholar
  7. Buschmann MBT (1982) Brain structure and its implication in metabolism in aging: a review. Clin Nutr 36:759Google Scholar
  8. Cheng EY, Cutkomp LK (1972) Aging in the honeybee Apis mellifera, as related to brain ATPases and their DDT sensitivity. J Insect Physiol 18:2285–2291CrossRefGoogle Scholar
  9. Clark AM, Rockstein M (1964) Aging in insects. In: Rockstein M (ed) The physiology of insecta, vol 1. Academic Press, London New York, p 227Google Scholar
  10. Clement EM, Strang RHC (1978) A comparison of some aspects of the physiology and metabolism of the nervous system of the locust Schistocerca gregaria in vitro with those in vivo. J Neurochem 31:135–145PubMedCrossRefGoogle Scholar
  11. Collatz K-G, Collatz S (1981) Age dependent ultrastructural changes in different organs of the mecopteran fly, Panorpa vulgaris. Exp Gerontol 26:183–193CrossRefGoogle Scholar
  12. Collatz K-G, Stammler G, Wilps H, Mehler L (1981) Programmed loss of flight ability in the early adult life of the blowfly Phormia terrae novae as a possible mechanism of intraspecific niche building with respect to the duration of life. Comp Biochem Physiol 68A:571–577CrossRefGoogle Scholar
  13. Evans PD (1978) Octopamine distribution in the insect nervous system. J Neurochem 30:1009–1013CrossRefGoogle Scholar
  14. Farrell S, Kuhlenbeck H (1964) Preliminary computation of the number of cellular elements in some insect brains. Anat Rec 148:369–370Google Scholar
  15. Frolkis VV, Tanin SA, Martynenko OA, Bogatskaya LN, Bezrukov VV (1984) Aging of the neurons. Interdiscip Top Gerontol 18:1–28Google Scholar
  16. Fyg W (1979) Beitrag zur Kenntnis der Altersveränderungen im Nervensystem und in anderen inneren Organen der Bienenkönigin (Apis mellifera L.). Apidologie 10:115–128CrossRefGoogle Scholar
  17. Goossen H (1951) Untersuchungen an Gehirnen verschieden großer, jeweils verwandter Coleopteren- und Hymenopterenarten. Zool Jahrb 62:1–64Google Scholar
  18. Hansemann D von (1914) Über Alterserscheinungen bei Bazillus rossii Fabr. Sitzungsber Ges Naturforsch Freunde Berlin 1914:187–191Google Scholar
  19. Herman MH, Miquel J, Johnson M (1971) Insect brain as a model for the study of aging. Acta Neuropathol 19:167–183PubMedCrossRefGoogle Scholar
  20. Hess A (1955) The fine structure of young and old spinal ganglia. Anat Rec 123:399–424PubMedCrossRefGoogle Scholar
  21. Hodge CF (1894) Changes in ganglion cells from birth to senile death. Observations on man and honey-bee. J Physiol (London) 17:129–134Google Scholar
  22. Hoffmeister F, Müller C (1979) Brain function in old age. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  23. Hoyer S (1982) The aging brain. Exp Brain Res Suppl 5. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  24. Kern M (1982) Das Insekt als Modell für Altersstudien. Altersabhängige Untersuchungen zum Gehirnstoffwechsel von Calliphora erythrocephala und Bombyx mori. Thesis, Johannes Gutenberg-Univ, MainzGoogle Scholar
  25. Kern M (1984) Relation of insect life span to body weight and energy metabolism and the problem of brain weight, metabolic rate, and life span. VXII Int Congr Entomol, HamburgGoogle Scholar
  26. Kern M (1985a) Metabolic rate of the insect brain in relation to body size and phylogeny. Comp Biochem Physiol 81(A): 501–506CrossRefGoogle Scholar
  27. Kern M (1985b) Utilization of glucose and proline in the brain of adult insects. Insect Biochem (in press)Google Scholar
  28. Kern M, Wegener G (1980) Age dependent changes in the metabolism of insect brains. 13th Meet Eur Biochem Soc, JerusalemGoogle Scholar
  29. Kern M, Wegener G (1982) The cerebral ganglion of insects. A model for the metabolic aspects of brain aging. 10th Aharon Katzir-Katchalsky Conf Ageing Brain, Mantua, ItalyGoogle Scholar
  30. Kern M, Wegener G (1984) Age affects the metabolic rate of insect brain. Mech Ageing Dev 28:237–242PubMedCrossRefGoogle Scholar
  31. Lamb MJ (1978) Ageing. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2c. Academic Press, London New York, p 43Google Scholar
  32. Lampareter HE, Akert K, Sandri C (1967) Wallersche Degeneration im Zentralnervensystem der Ameise. Elektronenmikroskopische Untersuchungen am Prothorakalganglion von Formia lugubris Zett. Schweiz Arch Neurobiol Neurochir Psychiatrie 100:337–354Google Scholar
  33. Lucht-Bertram E (1962) Degenerative Erscheinungen am Gehirn alternder Bienen-Königinnen (Apis melhfera L.). Z Bienenforsch 6:169–172Google Scholar
  34. Maurizio A (1959) Factors influencing the life span of bees. In: Wolstenholme GEW, O’Connor M (eds) CIBA Found Coll Ageing, vol 5. Churchill, London, p 231Google Scholar
  35. Meyer G (1955) Altersveränderungen an Nervenzellen sozialer Insekten. Mikrokosmos 44:209–211Google Scholar
  36. Miquel J (1971) Aging of male Drosophlia melanogaster. histological, histochemical, and ultra-structural observations. In: Strehler BL (ed) Adv Gerontol Res, vol 3. Academic Press, London New York, p 39Google Scholar
  37. Miquel J, Economos AC, Bensch KG, Atlan H, Johnson JE (1979) Review of cell aging in Drosophlia and mouse. Age 2:78–88CrossRefGoogle Scholar
  38. Miquel J, Binnard R, Fleming JE (1983) Role of metabolic rate and DNA-repair in Drosophlia aging: Implications for the mitochondrial mutation theory of aging. Exp Gerontol 18:167–171PubMedCrossRefGoogle Scholar
  39. Nesbitt HHJ (1941) A comparative morphological study of the nervous system of the orthoptera and related orders. Ann Entomol Soc Am 34:51–81Google Scholar
  40. Ordy JM, Brizzee KR (1975) Neurobiology of aging. Plenum Press, New York LondonGoogle Scholar
  41. Panno JP, Nair KK (1984) Chromatin condensation in the aging housefly. Exp Gerontol 19:63–72PubMedCrossRefGoogle Scholar
  42. Pichon Y, Satelle DB, Lane NJ (1972) Conduction processes in the nerve cord of the moth Manduca sexta in relation to its ultrastructure and haemolymph ionic composition. J Exp Biol 56:717–736PubMedGoogle Scholar
  43. Pixell-Goodrich HLM (1920) Determination of age in honeybees Q J Microsc Sci 64:191–205Google Scholar
  44. Rivera ME, Langer H (1978) Effect of light on ATPases in eyes and brain of the blowfly, Calliphora. J Comp Physiol 123:245–251CrossRefGoogle Scholar
  45. Rockstein M (1950) The relation of Cholinesterase activity to change in cell number with age in the brain of the adult honeybee. J Cell Comp Physiol 35:11–24CrossRefGoogle Scholar
  46. Rockstein M (1959) The biology of ageing in insects. In: Wolstenholme GEW, O’Connor M (eds) CIBA Found Coll Ageing, vol 5. Churchill, London, p 247Google Scholar
  47. Rockstein M (1967) Cellular age changes in insects. Symposia of the society of experimental biology XXI. Aspects of the biology of ageing. Academic Press, London New York, p 337Google Scholar
  48. Rockstein M, Miquel J (1973) Aging in insects. In: Rockstein M (ed) The physiology of insecta, vol 1. Academic Press, London New YorkGoogle Scholar
  49. Rockstein M, Gray FH, Berberian PA (1971) Time-correlated neurosecretory changes in the house fly, Musca domestica L. Exp Gerontol 6:211–217PubMedCrossRefGoogle Scholar
  50. Samorajski T (1980) Neurochemical changes in the aging human and nonhuman primate brain. In: Eisdorfer C, Fann WE (eds) Psychopharmacology of aging. Spectrum Publ, p 145Google Scholar
  51. Sbrenna G (1971) Postembryonic growth of the ventral nerve cord in Schistocerca gregaria Forsk. (Orthoptera: Acrididae). Boll Zool 38:49–74CrossRefGoogle Scholar
  52. Schmidt H (1923)Über den Alterstod der Biene. Z Naturwiss 29:343–362Google Scholar
  53. Schofield PK, Treherne JE (1975) Sodium transport and lithium movements across the insect blood-brain barrier. Nature (London) 225:723–725CrossRefGoogle Scholar
  54. Sharma PK; Bahadur J (1982) Age-related changes in the total protein in the brain of Periplaneta americana (L.). Mech Ageing Dev 20:49–52PubMedCrossRefGoogle Scholar
  55. Singh M, Singh YN (1981) Histological changes in the brain of Hypsa alciforon (Lepidoptera: Hypsidae) during metamorphosis. Z Mikrosk-Anat Forsch Leipzig 95:667–683Google Scholar
  56. Singh YN, Singh M (1980) Structure and metamorphic changes in the brain of the flesh fly Sarcophaga ruficornis Fabr. (Diptera: Sarcophagidae). J Hirnforsch 21:187–197PubMedGoogle Scholar
  57. Smallwood WM, Phillips RL (1916) Nuclear size in the nerve cells of the bee during the life cycle. J Comp Neurol 27:69–75CrossRefGoogle Scholar
  58. Sohal RS (1981) Metabolic rate, aging and lipofuscin accumulation. In: Sohal RS (ed) Age pigments. Elsevier, North-Holland, Amsterdam, p 303Google Scholar
  59. Sohal RS (1985) Aging in insects. In: Gilbert LI (ed) Comprehensive insect physiology, biochemistry and pharmacology, vol 10. Pergamon Press, Oxford, p 595Google Scholar
  60. Sohal RS, Allison VF (1971) Age-related changes in the fine structure of the flight muscle of the housefly. Exp Gerontol 6:167–172PubMedCrossRefGoogle Scholar
  61. Sohal RS, Sharma SP (1972) Age-related changes in the fine structure and number of neurons in the brain of the housefly, Musca domestica. Exp Gerontol 7:243–249PubMedCrossRefGoogle Scholar
  62. Sohal RS, Sharma SP, Couch EF (1972) Fine structure of the neural sheath, glia and neurons in the brain of the housefly, Musca domestica. Z Zellforsch 135:449–459PubMedCrossRefGoogle Scholar
  63. Stark WS, Carlson SD (1982) Ultrastructural pathology of the compound eye and optic neuropiles of the retinal degeneration mutant (w rdg BKS 222) Drosophila melanogaster. Cell Tissue Res 225:11–22PubMedCrossRefGoogle Scholar
  64. Stocker RF, Edwards JS, Truman JW (1978) Fine structure of degenerating abdominal motor neurons after eclosion in the sphingid moth, Manduca sexta. Cell Tissue Res 191:317–331PubMedCrossRefGoogle Scholar
  65. Stoffolano JG (1976) Insects as model systems for aging studies. In: Elias MF (ed) Special review of experimental aging research. EAR, Bar Habor, Maine, p 407Google Scholar
  66. Strang RHC (1981) Energy metabolism in the insect nervous system. In: Downer RGH (ed) Energy metabolism in insects. Plenum Press, New York London, p 169Google Scholar
  67. Thomsen M (1965) The neurosecretory system of adult Calliphora erythrocephala. Z Zellforsch 67:693–717CrossRefGoogle Scholar
  68. Treherne JE, Pichon Y (1972) The insect blood-brain barrier. Adv Insect Physiol 9:257–313CrossRefGoogle Scholar
  69. Treherne JE, Schofield PK (1979) Ionic homeostasis of the brain microenvironment in insects. TINS 2:227–230Google Scholar
  70. Truman JW (1983) Programmed cell death in the nervous system of an adult insect. J Comp Neurol 216:445–452PubMedCrossRefGoogle Scholar
  71. Webb S, Tribe MA (1974) Are there major degenerative changes in the flight muscle of ageing diptera? Exp Gerontol 9:43–49PubMedCrossRefGoogle Scholar
  72. Wegener G (1981) Comparative aspects of energy metabolism in nonmammalian brains under normoxic and hypoxic conditions. In: Stefanovich V, Kriegelstein J (eds) Animal models and hypoxia. Pergamon Press, Oxford, p 87Google Scholar
  73. Weidner H (1982) Morphologie, Anatomie und Histologie. In: Helmcke J-G, Starck D, Wermuth H (eds) Arthropoda/Insecta. Handbuch der Zoologie, Bd 4(2) 1/11. de Gruyter, Berlin New York, p 1Google Scholar
  74. Weyer F (1932) Cytologische Untersuchungen am Gehirn alternder Bienen und die Frage nach dem Alterstod. Z Zellforsch Mikrosk Anat 14:1–54CrossRefGoogle Scholar
  75. Wigglesworth VB (1960) The nutrition of the central nervous system in the cockroach Periplaneta americana L. The role of perineurium and glial cells in the mobilization of reserves. J Exp Biol 37:500–512Google Scholar
  76. Witthöft W (1967) Absolute Anzahl und Verteilung der Zellen im Hirn der Honigbiene. Z Morphol Tiere 61:160–184CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • M. J. Kern
    • 1
  1. 1.Institut für ZoologieJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations