Skip to main content

Sexual Activity and Life Span

  • Chapter
Insect Aging

Abstract

Most theoretical models of the evolution of life histories have incorporated the fundamental assumption that costly activities such as growth, repair and reproduction are to some extent mutually exclusive (e.g., Williams 1966, Gadgil and Bossert 1970, Schaeffer 1974, Charlesworth 1980). This means that natural selection cannot simultaneously maximize performance at these processes, so that evolutionary tradeoffs occur, the nature of which will depend upon the type of environment in which the organism lives. For instance, if the fertility of adults is associated with their size, then the age of first reproduction may be delayed to maximize allocation of resources to growth earlier in life. Alternatively, if predation on adults is high, the age of first reproduction may be brought forward at the expense of growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aigaki T, Ohba S (1984a) Effect of mating status on Drosophila virilis lifespan. Exp Gerontol 19:267–278

    Article  PubMed  CAS  Google Scholar 

  • Aigaki T, Ohba S (1984b) Individual analysis of age-associated changes in reproductive activity and lifespan of Drosophila virilis. Exp Gerontol 19:13 – 23

    Article  PubMed  CAS  Google Scholar 

  • Bell G (1984a) Measuring the cost of reproduction. 1. The correlation structure of the life table of a plankton rotifer. Evolution 38:300–313

    Article  Google Scholar 

  • Bell G (1984b) Measuring the cost of reproduction. II. The correlation structure of the life tables of five freshwater invertebrates. Evolution 38:314 – 326

    Article  Google Scholar 

  • Bhatnagar PL, Rockstein M, Daver M (1965) X-irradiation of pupae of the housefly Musca domestica L and adult survival. Exp Gerontol 1:149–159

    Article  Google Scholar 

  • Bilewicz S (1953) Experiments on the reproductive length of life of Drosophila melanogaster. Folia Biol 1:177–194

    CAS  Google Scholar 

  • Boggs CL, Watt WB (1981) Population structure of perid bufferflies. IV. Genetic and physiological investment in offspring by male Coltas. Oecologia 50:320–324

    Article  Google Scholar 

  • Bouletreau J (1978) Ovarian activity and reproductive potential in a natural population of Drosophila melanogaster. Oecologia 35:319–342

    Article  Google Scholar 

  • Buchan PB, Sohal RS (1981) Effect of temperature and different sex ratios on physical activity and life span in the adult housefly Musca domestica. Exp Gerontol 16:223–228

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B (1980) Evolution in age-structured populations. Cambridge University Press, Cambridge

    Google Scholar 

  • Cohet G, David J (1976) Deleterious effects of copulation in Drosophila females as a function of growth temperature of both sexes. Experientia 32:696–702

    Article  PubMed  CAS  Google Scholar 

  • Cork JM (1957) Gamma radiation and longevity of the flour beetle. Radiat Res 7:551 – 557

    Article  PubMed  CAS  Google Scholar 

  • David J (1963) Influence de la fécondation de la femelle sur le nombre et la taille des oeufs pondus. J Insect Physiol 9:13–24

    Article  Google Scholar 

  • Gadgil M, Bossert WH (1970) Life historical consequences of natural selection. Am Nat 104.1–24

    Article  Google Scholar 

  • Giesel JT (1979) Genetic co-variation of survivorship and other fitness indices in Drosophila melanogaster. Exp Gerontol 14:323 – 328

    Article  PubMed  CAS  Google Scholar 

  • Giesel JT, Murphy PA, Mantore NM (1982) The influence of temperature on genetic interrelationships of life history traits in a population of Drosophila melanogaster. what tangled data sets we weave. Am Nat 119:464–479

    Article  Google Scholar 

  • Giess MC, Cazeaux S, Murat M (1980) Post-radiative sterility and lifespan in males and females of Drosophila melanogaster. Exp Gerontol 15:503 – 510

    Article  PubMed  CAS  Google Scholar 

  • Lamb MJ (1964) The effects of radiation on the longevity of female Drosophila subobscura. J Insect Physiol 10:487–497

    Article  CAS  Google Scholar 

  • Lamb MJ (1978) Ageing. In: Asburner M, Wright TRF (eds) The genetics and biology of Drosophila. Academic Press, London New York

    Google Scholar 

  • Luckinbill LS, Arking R, Clare MJ, Cirocco WC, Buck SA (1984) Selection for delayed senescence in Drosophila melanogaster. Evolution 38:996–1003

    Article  Google Scholar 

  • Malick LE, Kidwell JF (1966) The effect of mating status, sex and genotype on longevity in Drosophila melanogaster. Genetics 54:203 – 209

    PubMed  CAS  Google Scholar 

  • Markow TA, Ankney PF (1984) Drosophila males contribute to oogenesis in a multiple mating species. Science 224:302–303

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J (1958) The effect of temperature and of egg laying on the longevity of Drosophila subobscura. J Exp Biol 35:832–842

    Google Scholar 

  • Mertz DB (1975) Senescent decline in flour beetles selected for early adult fitness. Physiol Zool 48:1–23

    Google Scholar 

  • Partridge L (1986) Lifetime reproductive success in Drosophila. In: Clutton-Brock TCB (ed) Lifetime Reproductive success. Chicago Univ Press, Chicago

    Google Scholar 

  • Partridge L, Andrews R (1985) The effect of reproductive activity on the longevity of male Drosophila melanogaster is not caused by an acceleration of senescence. J Insect Physiol

    Google Scholar 

  • Partridge L, Farquhar M (1981) Sexual activity reduces lifespan of male fruitflies. Nature (London) 294:580–582

    Article  Google Scholar 

  • Partridge L, Farquhar M (1983) Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size. Animal Behav 31:871 – 877

    Article  Google Scholar 

  • Partridge L, Halliday TR (1984) Mating patterns and mate choice. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Reznick D (1985) Costs of reproduction: an evaluation of the empirical evidence. Oikos 219

    Google Scholar 

  • Rockstein M, Daver M, Bhatnagar PL (1967) Further studies on the effect of X-irradiation on the house fly Musca domestica L. Radiat Res 31:840–845

    Article  Google Scholar 

  • Rose MR (1984a) Genetic covariation in Drosophila life history: untangling the data. Am Nat 123:565–569

    Article  Google Scholar 

  • Rose MR (1984b) Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38:1004–1010

    Article  Google Scholar 

  • Rose MR, Charlesworth B (1980) A test of evolutionary theories of senescence. Nature (London) 287:141–142

    Article  CAS  Google Scholar 

  • Rose MR, Charlesworth B (1981) Genetics of life history in Drosophila melanogaster. II. Exploratory selection experiments. Genetics 97:187–196

    PubMed  CAS  Google Scholar 

  • Schaeffer WM (1974) Selection for life histories: the effects of age structure. Ecology 55:291–303

    Article  Google Scholar 

  • Sokal RR (1970) Senescence and genetic load: evidence from Tribolium. Science 167:1733–1734

    Article  PubMed  CAS  Google Scholar 

  • Tribe M, Webb S (1979) How does exposure to radiation mimic ageing in insects? I. Life table data from the blowfly Calliphora erythrocephala. Exp Gerontol 14:247–254

    Article  PubMed  CAS  Google Scholar 

  • Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man. Aldine Press, Chicago

    Google Scholar 

  • Wattiaux JM (1968) Cumulative parental age effects in Drosophila subobscura. Evolution 22:406–421

    Article  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  • Williams GC (1966) Natural selection, the costs of reproduction, and a refinement to Lack’s principle. Am Nat 100:687–690

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Partridge, L. (1986). Sexual Activity and Life Span. In: Collatz, KG., Sohal, R.S. (eds) Insect Aging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70853-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70853-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70855-8

  • Online ISBN: 978-3-642-70853-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics