Skip to main content

The Evolution and Ecology of Body Size

  • Conference paper
Patterns and Processes in the History of Life

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 36))

Abstract

An organism’s size affects virtually all aspects of its physiology and ecology. There are presently no theoretical models which can explain the broad patterns of shape and functional changes observed; empirical descriptions of these patterns have suffered from a lack of rigor in choice and analysis of data.

The trend of persistent size increase in lineages of animals may be an artifact; the frequency of dwarfing may be hidden by taphonomic (preservational) and observational biases. The selective factors underlying persistent size changes are likely to differ between terrestrial vertebrates and marine invertebrates. The genetics of size change is poorly known and cannot be deduced from strictly allometric studies.

Body size is likely to have profound effects on the probabilities of speciation and extinction, and these effects would probably be amplified during periods of mass extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander RM (1982) Size, shape, and structure for running and flight. In: A Companion to animal physiology, eds Taylor CR, Johansen K, Bolis L, pp 309–324. New York: Cambridge University Press

    Google Scholar 

  2. Alexander RM, Jayes AS, Maloiy GMO, Wathuta EM (1979) Allometry of the limb bones of mammals from shrews (Sorex) to elephant (Loxodonta). J Zoll 189: 305–314

    Google Scholar 

  3. Anderson JF, Rahn H, Prange HD (1979) Scaling of supportive tissue mass. Q Rev Biol 54: 139–148

    Article  Google Scholar 

  4. Atchley WR (1983) Some genetic aspects of morphometric variation. In: Numerical taxonomy, ed Felsenstein J, pp 346–363. Berlin: Springer-Verlag

    Google Scholar 

  5. Atchley WR, Riska B, Kohn LAP, Plummer AA, Rutledge JJ (1984) A quantitative genetic analysis of brain and body size associations, their origin and ontogeny: data from mice. Evolution 38: 1165–1179

    Article  Google Scholar 

  6. Ayala FJ, Hedgecock D, Zumwalt GS, Valentine JW (1973) Genetic variation in Tridacna maxima, an ecological analog of some unsuccessful evolutionary lineages. Evolution 27: 177–191

    Article  Google Scholar 

  7. Banse K (1979) On weight dependence of net growth efficiency and specific respiration rates among field populations of invertebrates. Oecologia 38: 111–126

    Article  Google Scholar 

  8. Banse K (1982) Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol Oceanogr 27: 1059–1071

    Article  Google Scholar 

  9. Banse K (1982) Mass-scaled rates of respiration and intrinsic growth in very small invertebrates. Mar Ecol Prog Ser 9: 281–297

    Article  Google Scholar 

  10. Banse K, Mosher S (1980) Adult body mass and annual production/biomass relationships of field populations. Ecol Monogr 50: 355–379

    Article  Google Scholar 

  11. Barlow GW (1981) Patterns of parental investment, dispersal and size among coral reef fish. Env Biol Fish 6: 65–85

    Article  Google Scholar 

  12. Baskerville GL (1970) Testing the uniformity of variance in arithmatic and logarithmic units of a Y-variable for classes of an X-variable. Oak Ridge National Laboratory Publ ORNL-IBP-70-1. Oak Ridge, TN: Oak Ridge National Laboratory

    Google Scholar 

  13. Baskerville GL (1972) Use of logarithmic regression in estimation of plant biomass. Can J Forest Res 2: 49 - 53

    Article  Google Scholar 

  14. Bayne BL, Thompson RJ, Widdows J (1976) Physiology: I. In: Marine mussels: their ecology and physiology, ed Bayne BL, pp 121–206. Intl Biol Prog Monogr 10. Cambridge: Cambridge University Press

    Google Scholar 

  15. Bayne BL, Widdows J (1978) The physiological ecology of two populations of Mytilus edulis L. Oecologia 37: 137–162

    Article  Google Scholar 

  16. Beauchamp JJ, Olson JS (1973) Corrections for bias in regression estimates after logarithmic transformation. Ecology 54: 1403–1407

    Article  Google Scholar 

  17. Bengston S, Fletcher TP (1983) The oldest sequence of skeletal fossils in the Lower Cambrian of southeastern Newfoundland. Can J Earth Sci 20: 525–536

    Article  Google Scholar 

  18. Biewener AA (1982) Bone strength in small mammals and bipedal birds: do safety factors change with body size? J Exp Biol 98: 289–301

    PubMed  CAS  Google Scholar 

  19. Biewener AA (1983) Allometry of quadrupedal locomotion: the scaling of duty factor, bone curvature and limb orientation to body size. J Exp Biol 105: 147–171

    PubMed  CAS  Google Scholar 

  20. Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S (1978) Relationships between body size and some life history parameters. Oecologia 37: 257–272

    Article  Google Scholar 

  21. Blum JJ (1977) On the geometry of four-dimensions and the relationship between metabolism and body mass. J Theoret Biol 64: 599–601

    Article  CAS  Google Scholar 

  22. Bonner JT (1965) Size and cycle: An essay on the structure of biology. Princeton: Princeton University Press

    Google Scholar 

  23. Bonner JT (1968) Size change in development and evolution. In: Paleobiological aspects of growth and development, ed Macurda DB, pp 1–15. The Paleontological Society, Memoir 2 [J Paleontol 42 (5)]. Menosha, WI: George Banta

    Google Scholar 

  24. Boucot AJ (1976) Rates of size increase and of phyletic evolution. Nature 261: 694–696

    Article  PubMed  CAS  Google Scholar 

  25. Brasier MD (1979) The Cambrian radiation event. In: The origin of major invertebrate groups, ed House MR, pp 103–159. Systematics Association Spec vol 12. New York: Academic Press

    Google Scholar 

  26. Brasier MD (1982) Sea-level changes, facies changes and the Late Precambrian-Early Cambrian evolutionary explosion. Precambrian Res 17: 105–123

    Article  Google Scholar 

  27. Brower JC, Veinus J (1981) Allometry in pterosaurs. Univ Kansas Paleont Contr 105: 1–32

    Google Scholar 

  28. Brown JH (1971) Mammals on mountaintops: nonequilibrium insular biogeography. Am Nat 105: 467–478

    Article  Google Scholar 

  29. Brown JH (1981) Two decades of homage to Santa Rosalia: toward a general theory of diversity. Am Zool 21: 877–888

    Google Scholar 

  30. Calder WA III (1982) A tradeoff between space and time: dimensional constraints in mammalian ecology. J Theoret Biol 98: 393–400

    Article  Google Scholar 

  31. Calder WA III (1982) The pace of growth: an allometric approach to comparative embryonic and post-embryonic growth. J Zool 198: 215–225

    Article  Google Scholar 

  32. Calder WA III (1983) Ecological scaling: mammals and birds. Ann Rev Ecol Syst 14: 213–230

    Article  Google Scholar 

  33. Calder WA III (1984) Size, function, and life history. Cambridge: Harvard University Press

    Google Scholar 

  34. Case TJ (1978) On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates. Q Rev Biol 53: 243–282

    Article  PubMed  CAS  Google Scholar 

  35. Case TJ (1979) Optimal body size and an animal’s diet. Acta Biother 28: 54–69

    Article  CAS  Google Scholar 

  36. Caughley G, Krebs CJ (1983) Are big mammals simply little mammals writ large? Oecologia 59: 7–17

    Article  Google Scholar 

  37. Cavagna GA, Heglund NC, Taylor CR (1977) Walking, running, and galloping: mechanical similarities between different animals. In: Scale effects in animal locomotion, ed Pedley TJ, pp 111–126. New York: Academic Press

    Google Scholar 

  38. Chaloner WG, Sheerin A (1979) Devonian macrofloras. Spec Paper Palaeontol 23: 145–161

    Google Scholar 

  39. Cheverud JM (1982) Relationships among ontogenetic, static, and evolutionary allometry. Am J Phys Anthropol 59: 139–149

    Article  PubMed  CAS  Google Scholar 

  40. Cheverud JM (1984) Quantitative genetics and developmental constraints on evolution by selection. J Theoret Biol 110: 155–171

    Article  CAS  Google Scholar 

  41. Cheverud JM, Rutledge JJ, Atchley WR (1983) Quantitative genetics of development: genetic correlations among age-specific trait values and the evolution of ontogeny. Evolution 37: 895–905

    Article  Google Scholar 

  42. Clarke MRB (1980) The reduced major axis of a bivariate sample. Biometrika 67: 441–446

    Article  Google Scholar 

  43. Cloud P, Glaessner MF (1982) The Ediacarian period and system: metazoa inherit the earth. Science 217: 783–792

    Article  PubMed  CAS  Google Scholar 

  44. Cock AG (1966) Genetical aspects of metrical growth and form in animals. Q Rev Biol 41: 131–190

    Article  PubMed  CAS  Google Scholar 

  45. Currey J (1984) The mechanical adaptations of bones. Princeton: Princeton University Press

    Google Scholar 

  46. Damuth J (1981) Population density and body size in mammals. Nature 290: 699–700

    Article  Google Scholar 

  47. Damuth J (1981) Home range, home range overlap, and species energy use among herbivorous mammals. Biol J Linn Soc 15: 185–193

    Article  Google Scholar 

  48. Damuth J (1982) Analysis of the preservation of community structure of assemblages of fossil mammals. Paleobiology 8: 434–446

    Google Scholar 

  49. Economos AC (1982) On the origin of biological similarity. J Theoret Biol 94: 25–60

    Article  Google Scholar 

  50. Economos AC (1983) Elastic and/or geometric similarity in mammalian design? J Theoret Biol 103: 167–172

    Article  CAS  Google Scholar 

  51. Economos AC (1984) The surface illusion and the elastic/geometric similarity paradox, encore. J Theoret Biol 109: 463–470

    Article  CAS  Google Scholar 

  52. Farlow JO (1976) A consideration of the trophic dynamics of a late Cretaceous large-dinosaur community (Oldman Formation). Ecology 57: 841–857

    Article  Google Scholar 

  53. Feldman HA, McMahon TA (1983) The 3/4 mass exponent for energy metabolism is not a statistical artifact. Resp Physiol 52: 149–163

    Article  CAS  Google Scholar 

  54. Fenchel T (1974) The intrinsic rate of natural increase: the relationship with body size. Oecologia 14: 317–326

    Article  Google Scholar 

  55. Finks RM (1971) A new Permian eutaxicladine demosponge, mosaic evolution, and the origin of the Dicranocladina. J Paleontol 45: 977–997

    Google Scholar 

  56. Frasier CC (1984) An explanation of the relationships between mass, metabolic rate and characteristic skeletal length for birds and mammals. J Theoret Biol 109: 331–371

    Article  CAS  Google Scholar 

  57. Garland T Jr (1983) Scaling the ecological cost of transport to body mass in terrestrial mammals. Am Nat 121: 571–587

    Article  Google Scholar 

  58. Garstang W (1922) The theory of recapitulation: a critical restatement of the biogenetic law. J Linn Soc Lond 35: 81–101

    Article  Google Scholar 

  59. Goldspink G (1977) Mechanics and energetics of muscle in animals of different sizes, with particular reference to muscle fibre composition of vertebrate muscle. In: Scale effects in animal locomotion, ed Pedley TJ, pp 37–56. New York: Academic Press

    Google Scholar 

  60. Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev 41: 587–640

    Article  PubMed  CAS  Google Scholar 

  61. Gould S J (1971) Geometric similarity in allometric growth: a contribution to the problem of scaling in the evolution of size. Am Nat 105: 113–136

    Article  Google Scholar 

  62. Gould S J (1972) Allometric fallacies and the evolution of Gryphaea: a new interpretation based on White’s criterion of geometric similarity. In: Evolutionary biology, eds Dobzhansky T, Hecht MK, Steere WC, vol 6, pp 91–119

    Google Scholar 

  63. Gould SJ (1975) On the scaling of tooth size in mammals. Am Zool 15: 351–362

    Google Scholar 

  64. Gould S J (1977) Ontogeny and Phylogeny. Cambridge: Harvard University Press

    Google Scholar 

  65. Gould S J (1979) An allometric interpretation of species-area curves: the meaning of the coefficient. Am Nat 114: 335–343

    Article  Google Scholar 

  66. Gould S J (1982) Change in developmental timing as a mechanism of macroevol- ution. In: Evolution and development, ed Bonner JT, pp 333–346. Dahlem Konferenzen. Berlin, Heidelberg, New York: Springer-Verlag

    Google Scholar 

  67. Gowing G, Recher HF (1984) Length-weight relationships for invertebrates from forests in south-eastern New South Wales. Aust J Ecol 9: 5–8

    Article  Google Scholar 

  68. Gray BF (1981) On the “surface law” and basal metabolic rate. J Theoret Biol 93: 757–767

    Article  CAS  Google Scholar 

  69. Hallam A (1965) Environmental causes of stunting in living and fossil marine ben- thonic invertebrates. Palaeontology 8: 132–155

    Google Scholar 

  70. Hallam A (1975) Evolutionary size increase and longevity in Jurassic bivalves and ammonites. Nature 258: 493–496

    Article  Google Scholar 

  71. Hallam A (1982) Patterns of speciation in Jurassic Gryphaea. Paleobiology 8: 354–366

    Google Scholar 

  72. Harestad AS, Bunnell FL (1979) Home range and body weight—a réévaluation. Ecology 60: 389–402

    Article  Google Scholar 

  73. Harvey PH (1982) On rethinking allometry. J Theoret Biol 95: 37–41

    Article  CAS  Google Scholar 

  74. Hemmingsen AM (1950) The relation of standard (basal) energy metabolism to total fresh weight of living organisms. Rep Steno Mem Hosp 4: 1–58

    Google Scholar 

  75. Hemmingsen AM (1960) Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep Steno Mem Hosp 9: 7–110

    CAS  Google Scholar 

  76. Hennemann WW III (1983) Relationships among body mass, metabolic rate and the intrinsic rate of natural increase in mammals. Oecologia 56: 104–108

    Article  Google Scholar 

  77. Heusner AA (1982) Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber’s equation a statistical artifact? Resp Physiol 48: 1–12

    Article  CAS  Google Scholar 

  78. Hinds DS, McMillen RE (1984) Energy scaling in marsupials and eutherians. Science 225: 335–337

    Article  PubMed  CAS  Google Scholar 

  79. Hutchinson GE (1959) Homage to Santa Rosalia or Why are there so many kinds of animals? Am Nat 93: 145–159

    Article  Google Scholar 

  80. Hutchinson GE, McArthur RH (1959) A theoretical ecological model of size distributions among species of animals. Am Nat 93: 117–125

    Article  Google Scholar 

  81. Jablonski D (1980) Apparent versus real biotic effects of transgressions and regressions. Paleobiology 6: 397–407

    Google Scholar 

  82. Jablonski D, Lutz RA (1983) Larval ecology of marine benthic invertebrates: paleo- biological implications. Biol Rev 58: 21–89

    Article  Google Scholar 

  83. Jerison HJ (1973) Evolution of the brain and intelligence. New York: Academic Press

    Google Scholar 

  84. Jolicoeur P (1963) The multivariate generalization of the allometry equation. Biometrics 19: 497–499

    Article  Google Scholar 

  85. Jungers WL (1984) Aspects of size and scaling in primate biology with special reference to the locomotor skeleton. Yrbk Phys Anthropol 27: 73–97

    Article  Google Scholar 

  86. Jungers WL (1985) Body size and scaling of limb proportions in primates. In: Size and scaling in primate biology, ed Jungers WL, pp 345–381. New York: Plenum

    Google Scholar 

  87. Jungers WL, German RZ (1981) Ontogenetic and interspecific skeletal allometry in nonhuman primates: bivariate versus multivariate analysis. Am J Phys Anthropol 55: 195–202

    Article  Google Scholar 

  88. Kellogg DE (1983) Phenology of morphologic changes in radiolarian lineages from deep-sea cores: implications for macroevolution. Paleobiology 9: 355–362

    Google Scholar 

  89. Kemp P, Bertness MD (1984) Snail shape and growth rates: evidence for plastic shell allometry in Littorina littorea. Proc Natl Acad Sci USA 81: 811–813

    Article  PubMed  CAS  Google Scholar 

  90. Kidwell JF, Chase HB (1967) Fitting the allometric equation—a comparison of ten methods by computer simulation. Growth 31: 165–179

    PubMed  CAS  Google Scholar 

  91. Kirkpatrick M (1984) Demographic models based on size, not age, for organisms with indeterminate growth. Ecology 65: 1874–1884

    Article  Google Scholar 

  92. Kleiber M (1932) Body size and metabolism. Hilgardia 6: 315–353

    CAS  Google Scholar 

  93. Kuhry B, Marcus LF (1977) Bivariate linear models in biometry. Syst Zool 26: 201–209

    Article  Google Scholar 

  94. Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution 33: 402–416

    Article  Google Scholar 

  95. Lande R (1982) A quantitative genetic theory of life history evolution. Ecology 63: 607–615

    Article  Google Scholar 

  96. Lande R (1985) Genetic and evolutionary aspects of allometry. In: Size and scaling in primate biology, ed Jüngers WL, pp 21–32. New York: Plenum Press

    Google Scholar 

  97. Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37: 1210–1226

    Article  Google Scholar 

  98. Lavigne DM (1982) Similarity in energy budgets of animal populations. J Anim Ecol 51: 195–206

    Article  Google Scholar 

  99. Laws EA, Archie JW (1981) Appropriate use of regression analysis in marine biology. Mar Biol 65: 13–16

    Article  Google Scholar 

  100. Lazarus D (1983) Speciation in pelagic Protista and its study in the planktonic microfossil record: a review. Paleobiology 9: 327–340

    Google Scholar 

  101. Lighthill J (1977) Comments on Dr. Prange’s paper. In: Scale effects in animal locomotion, ed Pedley TJ, pp 182–183. New York: Academic Press

    Google Scholar 

  102. Lernen CA, Frreeman PW (1984) The genus: a macroevolutionary problem. Evolution 38: 1219–1237

    Article  Google Scholar 

  103. Lomolino MV (1985) Body size of mammals on islands: the island rule reexamined. Am Nat 125: 310–316

    Article  Google Scholar 

  104. Malmgren BA, Berggren WA, Lohmann GP (1984) Species formation through punctuated gradualism in planktonic foraminifera. Science 225: 317–319

    Article  PubMed  CAS  Google Scholar 

  105. Maloiy GMO, Alexander RM, Njau R, Jayes AS (1979) Allometry of the legs of running birds. J Zool 187: 161–167

    Article  Google Scholar 

  106. Mancini EA (1978) Origin of micromorph faunas in the geologic record. J Paleontol 52: 321–333

    Google Scholar 

  107. Mancini EA (1978) Origin of the Grayson micromorph fauna (Upper Cretaceous) of north-central Texas. J Paleontol 52: 1294–1314

    Google Scholar 

  108. Marshall LG, Corruccini RS (1978) Variability, evolutionary rates, and allometry in dwarfing lineages. Paleobiology 4: 101–119

    Google Scholar 

  109. Matthews SC, Missarzhevsky VV (1975) Small shelly fossils of late Precambrian- Cambrian age. J Geol Soc Lond 131: 289–304

    Article  Google Scholar 

  110. May RM (1978) The dynamics and diversity of insect faunas. In: Diversity of insect faunas, eds Mound LA, Waloff N, pp 188–204. Oxford: Blackwell Scientific Publications

    Google Scholar 

  111. McEdward LR (1984) Morphometric and metabolic analysis of the growth and form of an echinopluteus. J Exp Mar Biol Ecol 82: 259–287

    Article  Google Scholar 

  112. McMahon TA (1973) Size and shape in biology. Science 179: 1201–1204

    Article  PubMed  CAS  Google Scholar 

  113. McMahon TA (1975) Allometry and biomechanics: limb bones in adult ungulates. Am Nat 109: 547–563

    Article  Google Scholar 

  114. McMahon TA (1975) The mechanical design of trees. Sci Am 233: 93–102

    Article  Google Scholar 

  115. McMahon TA (1975) Using body size to understand the structural design of animals: quadrupedal locomotion. J Appl Physiol 39: 619–627

    PubMed  CAS  Google Scholar 

  116. McMahon TA (1980) Scaling physiological time. Lect Math Life Sci 13: 131–163

    Google Scholar 

  117. McMahon TA, Feldman HA (1983) The 3/4 mass exponent for energy metabolism is not a statistical artifact. Resp Physiol 52: 149–163

    Article  Google Scholar 

  118. McMahon TA, Kronauer RE (1976) Tree structures: deducing the principle of mechanical design. J Theoret Biol 59: 443–466

    Article  CAS  Google Scholar 

  119. McNamara KJ (1982) Heterochrony and phylogenetic trends. Paleobiology 8: 130–142

    Google Scholar 

  120. Millar JS, Zammuto RM (1983) Life histories of mammals: an analysis of life tables. Ecology 64: 631–635

    Article  Google Scholar 

  121. Murray CD (1927) A relationship between circumference and weight in trees and its bearing on branching angles. J Gen Physiol 10: 725–728

    Article  PubMed  CAS  Google Scholar 

  122. Newell ND (1949) Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3: 103–124

    Article  PubMed  CAS  Google Scholar 

  123. Pedley TJ (1977) Scale effects in animal locomotion. New York: Academic Press

    Google Scholar 

  124. Peters RH (1983) The ecological implications of body size. Cambridge: Cambridge University Press

    Google Scholar 

  125. Peters RH, Raelson JV (1984) Relations between individual size and mammalian population density. Am Nat 124: 498–517

    Article  Google Scholar 

  126. Peterson JA, Benson JA, Ngai M, Morin J, Ow C (1982) Scaling in tensile “skeletons”: structures with scale-independent length dimensions. Science 217: 1267–1270

    Article  PubMed  CAS  Google Scholar 

  127. Peterson JA, Benson JA, Morin JG, McFall-Ngai MJ (1984) Scaling in tensile “skeletons”: scale dependent length of Achilles tendon in mammals. J Zool 202: 361–372

    Article  Google Scholar 

  128. Peterson RO, Page RE, Dodge KM (1984) Wolves, moose, and the allometry of population cycles. Science 224: 1350–1352

    Article  PubMed  CAS  Google Scholar 

  129. Piatt T, Silvert W (1981) Ecology, physiology, allometry and dimensionality. J Theoret Biol 93: 855–860

    Article  Google Scholar 

  130. Powell EN, Stanton RJ Jr (1985) Estimating biomass and energy flow of molluscs in palaeo-communities. Palaeontology 28: 1–34

    Google Scholar 

  131. Prange HD (1977) The scaling and mechanics of arthropod exoskeletons. In: Scale effects in animal locomotion, ed Pedley TJ, pp 169–181. New York: Academic Press

    Google Scholar 

  132. Prange HD, Anderson JF, Rahn H (1979) Scaling of skeletal mass to body mass in birds and mammals. Am Nat 113: 103–122

    Article  Google Scholar 

  133. Prange HD, Christman SP (1976) The allometrics of rattlesnake skeletons. Copeia 1976: 542–545

    Article  Google Scholar 

  134. Prothero DR, Sereno PC (1982) Allometry and paleoecology of medial Miocene dwarf rhinoceroses from the Texas Gulf Coastal Plain. Paleobiology 8: 16–30

    Google Scholar 

  135. Prothero J (1984) Scaling of standard energy metabolism in mammals: I. Neglect of circadian rhythms. J Theoret Biol 106: 1–8

    Article  CAS  Google Scholar 

  136. Radinsky L (1978) Evolution of brain size in carnivores and ungulates. Am Nat 112: 815–831

    Article  Google Scholar 

  137. Rashevsky N (1944) Studies in the physicomathematical theory of organic form. Bull Math Biophys 6: 1–59

    Article  Google Scholar 

  138. Rashevsky N (1961) Mathematical principles in biology and their applications. Springfield, OH: Thomas

    Google Scholar 

  139. Raup DM, Crick RE (1981) Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology 7: 200–215

    Google Scholar 

  140. Reaka ML (1979) The evolutionary ecology of life history patterns in stomatopod Crustacea. In: Reproductive ecology of marine invertebrates, ed Stancyk SE, pp 235–260. Columbia: University of South Carolina Press

    Google Scholar 

  141. Reaka ML (1980) Geographic range, life history patterns, and body size in a guild of coral-dwelling mantis shrimps. Evolution 34: 1019–1030

    Article  Google Scholar 

  142. Reynolds WW, Karlotski WJ (1977) The allometric relationship of skeleton weight to body weight in teleost fishes: a preliminary comparison with birds and mammals. Copeia 1977: 160–163

    Article  Google Scholar 

  143. Ricker WE (1973) Linear regressions in fisheries research. J Fish Res Bd Can 30: 409–434

    Article  Google Scholar 

  144. Ricklefs RE, Marks HL (1984) Insensitivity of brain growth to selection of four-week body mass in Japanese quail. Evolution 38: 1180–1185

    Article  Google Scholar 

  145. Robinson WR, Peters RH, Zimmermann J (1983) The effects of body size and temperature on metabolic rate of organisms. Can J Zool 61: 281–288

    Article  Google Scholar 

  146. Rogers LE, Hinds WT, Buschbom RL (1976) A general weight vs. length relationship for insects. Ann Entomol Soc Am 69: 387–389

    Google Scholar 

  147. Roth VL (1979) Can quantum leaps in body size be recognized among mammalian species? Paleobiology 5: 318–336

    Google Scholar 

  148. Roth ML (1981) Constancy in size ratios of sympatric species. Am Nat 118: 394–404

    Article  Google Scholar 

  149. Runnegar B (1982) Oxygen requirements, biology and phylogenetic significance of the late Precambrian worm Dickinsonia, and the evolution of the burrowing habit. Alcheringa 6: 223–239

    Article  Google Scholar 

  150. Runnegar B, Bentley C (1983) Anatomy, ecology and affinities of the Australian Early Cambrian bivalve Pojetaia runnegari Jell. J Paleontol 57: 73–92

    Google Scholar 

  151. Runnegar B, Jell PA (1976) Australian Middle Cambrian molluscs and their bearing on early molluscan evolution. Alcheringa 1: 109–138

    Article  Google Scholar 

  152. Schmidt-Nielsen K (1975) Scaling in biology: the consequences of size. J Exp Zool 194: 287–308

    Article  PubMed  CAS  Google Scholar 

  153. Schmidt-Nielsen K (1984) Scaling: Why is animal size so important? Cambridge: Cambridge University Press

    Google Scholar 

  154. Schmitz OJ, Lavigne DM (1984) Intrinsic rate of increase, body size, and specific metabolic rate in marine mammals. Oecologia 62: 305–309

    Article  Google Scholar 

  155. Scott KM (1983) Prediction of body weight of fossil Artiodactyla. Zool J Linn Soc 77: 199–215

    Article  Google Scholar 

  156. Sebens KB (1979) The energetics of asexual reproduction and colony formation in benthic marine invertebrates. Am Zool 19: 683–697

    Google Scholar 

  157. Sebens KP (1982) The limits to indeterminate growth: an optimal size model applied to passive suspension feeders. Ecology 63: 209–222

    Article  Google Scholar 

  158. Seilacher A (1984) Late Precambrian and Early Cambrian metazoa: preservational or real extinctions? In: Patterns of change in earth evolution, eds Holland HD, Trendall AF, pp 159–168. Dahlem Konferenzen. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag

    Google Scholar 

  159. Seim E, Saether B-E (1983) On rethinking allometry: which regression model to use? J Theoret Biol 104: 161–168

    Article  Google Scholar 

  160. Sernetz M, Rufeger H, Kindt R (1982) Interpretation of the reduction law of metabolism. Expl Biol Med 7: 21–29

    Google Scholar 

  161. Simpson GG (1953) The major features of evolution. New York: Columbia University Press

    Google Scholar 

  162. Sinervo BR, McEdward LR, Strathmann RR (1984) The effect of experimentally reduced egg size on form, function and rate of development of planktotrophic larval echinoids. Am Zool 24: 131A

    Google Scholar 

  163. Singh SM, Zouros E (1978) Genetic variation associated with growth rate in the American oyster (Crassostrea virginica). Evolution 32: 342–353

    Article  Google Scholar 

  164. Smith RJ (1981) Interspecific scaling of maxillary canine size and shape in female primates: relationships to social structure and diet. J Hum Evol 10: 165–173

    Article  Google Scholar 

  165. Smith RJ (1984) Determination of relative size: the “criterion of subtraction” problem in allometry. J Theoret Biol 108: 131–142

    Article  CAS  Google Scholar 

  166. Sokal RR, Rohlf FJ (1981) Biometry. San Francisco: WH Freeman and Company

    Google Scholar 

  167. Sprugel DG (1983) Correcting for bias in log-transformed allometric equations. Ecology 64: 209–210

    Article  Google Scholar 

  168. Stahl WR (1967) Scaling of respiratory variables in mammals. J Appl Physiol 22: 453–460

    PubMed  CAS  Google Scholar 

  169. Stanley SM (1973) An explanation for Cope’s rule. Evolution 27: 1–26

    Article  Google Scholar 

  170. Stearns SC (1983) The impact of size and phylogeny on patterns of covariation in the life-history traits of mammals. Oikos 41: 173–187

    Article  Google Scholar 

  171. Strathmann RR, Strathmann MF (1982) The relationship between adult size and brooding in marine invertebrates. Am Nat 119: 91–101

    Article  Google Scholar 

  172. Strathmann RR, Strathmann MF, Emson RH (1984) Does limited brood capacity link adult size, brooding, and simultaneous hermaphroditism? A test with the starfish Asterina phylactica. Am Nat 123: 796–818

    Article  Google Scholar 

  173. Sweet SS (1980) Allometric inference in morphology. Am Zool 20: 643–652

    Google Scholar 

  174. Ultsch GR (1974) The allometric relationship between metabolic rate and body size: role of the skeleton. Am Midi Nat 92: 500–504

    Article  CAS  Google Scholar 

  175. Van Valen L (1973) Body size and numbers of plants and animals. Evolution 27: 27–35

    Article  Google Scholar 

  176. Van Valen L (1974) Two modes of evolution. Nature 252: 298–300

    Article  PubMed  Google Scholar 

  177. Van Valen L (1975) Group selection, sex, and fossils. Evolution 29: 87–94

    Article  Google Scholar 

  178. Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. London: Edward Arnold

    Google Scholar 

  179. Walker TD, Valentine JW (1984) Equilibrium models of evolutionary species diversity and the number of empty niches. Am Nat 124: 887–899

    Article  Google Scholar 

  180. Weiser W (1984) A distinction must be made between the ontogeny and the phylogeny of metabolism in order to understand the mass exponent of energy metabolism. Resp Physiol 55: 1–9

    Article  Google Scholar 

  181. Western D (1980) Linking the ecology of past and present mammal communities. In: Fossils in the making, eds Behrensmeyer AK, Hill AP, pp 41–54. Chicago: The University of Chicago Press

    Google Scholar 

  182. Western D (1983) Production, reproduction and size in mammals. Oecologia 59: 269–271

    Article  Google Scholar 

  183. White J (1981) The allometric interpretation of the self-thinning rule. J Theoret Biol 89: 475–500

    Article  Google Scholar 

  184. White JF, Gould SJ (1965) Interpretation of the coefficient in the allometric equation. Am Nat 99: 5–18

    Article  Google Scholar 

  185. Whittaker RH, Marks PL (1975) Methods of assessing terrestrial productivity. In: Primary productivity of the biosphere, eds Leith H, Whittaker RH, pp 55–118. New York: Springer Verlag

    Google Scholar 

  186. Whittaker RH, Woodwell GM (1968) Dimension and production relations of trees and shrubs in the Brookhaven Forest, New York. J Ecol 56: 1–25

    Google Scholar 

  187. Wilson DS (1975) The adequacy of body size as a niche difference. Am Nat 109: 769–784

    Article  Google Scholar 

  188. Wooten MC, Smith MH (1985) Large mammals are genetically less variable? Evolution 39: 210–212

    Article  Google Scholar 

  189. Wright S (1968) Evolution and the genetics of populations, vol 1. Genetic and biometric foundations. Chicago: University of Chicago Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

D. M. Raup D. Jablonski

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen

About this paper

Cite this paper

LaBarbera, M. (1986). The Evolution and Ecology of Body Size. In: Raup, D.M., Jablonski, D. (eds) Patterns and Processes in the History of Life. Dahlem Workshop Reports, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70831-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70831-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70833-6

  • Online ISBN: 978-3-642-70831-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics