Skip to main content

Glutamate and GABA Receptors of Insect Muscles: Biochemical Identification and Interactions with Insecticides

  • Chapter
Approaches to New Leads for Insecticides

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Because of the continuous development of insect resistance to insecticides it is important to develop new insecticides which have different structures and different modes of action. The standard approach used by the insecticide industry has been to synthesize chemicals of varying structures and screen them for toxicity to in-sects. After the proven success of a compound, scientists study its mechanism of action and search for its molecular target. It may be more profitable to reverse the sequence and exploit the wealth of structures of drugs that are known to act on vital proteins in the insect body, as models for synthesis of new generations of insecticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abalis IM (1981) Biochemical and pharmacological studies of the insecticidal cyclodepsipeptides De- struxins and Bassianolide produced by entomopathogenic fungi. Thesis, Cornell Univ, Ithaca, New York

    Google Scholar 

  • Abalis IM, Eldefrawi AT (in press) [3H] Muscimol binding to a putative GABA receptor in honey bee brain and its interaction with avermectin Bla. Pestic Biochem Physiol

    Google Scholar 

  • Abalis IM, Eldefrawi ME, Eldefrawi AT (1983) Biochemical identification of putative GABA/benzo diazepine receptors in house fly thorax muscles. Pestic Biochem Physiol 20: 39–48

    Article  CAS  Google Scholar 

  • Abalis IM, Eldefrawi ME, Eldefrawi AT (1985) High affinity stereospecific binding of cyclodiene insecticides and y-hexachlorocyclohexane to y-aminobutyric acid receptors of rat brain. Pestic Biochem Physiol 24: 95–102

    Article  CAS  Google Scholar 

  • Baudry M, Lynch G (1979) Two glutamate binding sites in rat hippocampal membranes. Eur J Pharmacol 57: 283–285

    Article  PubMed  CAS  Google Scholar 

  • Baudry M, Lynch G (1981) Characterization of two 3H-glutamate binding sites in rat hippocampal membranes. J Neurochem 36: 811–820

    Article  PubMed  CAS  Google Scholar 

  • Baudry M, Kramer K, Fagni L, Recasens M, Lynch G (1983) Classification and properties of acidic amino acid receptors in hippocampus II. Biochemical studies using a sodium efflux assay. Mol Pharmacol 24: 222–228

    PubMed  CAS  Google Scholar 

  • Biziere K, Thompson H, Coyle JT (1980) Characterization of specific high-affinity binding sites for L-[3H]glutamic acid in rat brain membranes. Brain Res 183: 421–433

    Article  PubMed  CAS  Google Scholar 

  • Bowery NG, Hill DR, Hudson AL (1983) Characteristics of GABAb receptor binding sites on rat whole brain synaptic membranes. Br J Pharmacol 78: 191–206

    PubMed  CAS  Google Scholar 

  • Braestrup C, Squires RF (1977) Specific benzodiazepine receptors in rat brain characterized by high affinity [3H]diazepam binding. Proc Natl Acad Sci USA 74: 3805–3809

    Article  PubMed  CAS  Google Scholar 

  • Braestrup C, Squires RF (1978) Brain specific benzodiazepine receptors. Br J Psychiatry 133: 249 - 260

    Article  PubMed  CAS  Google Scholar 

  • Braestrup C, Nielsen M, Skovbjerg H, Gredal O (1981) β-Carboline-3-carboxylates and benzodiazepine receptors. In: Costa E (ed) GABA and benzodiazepine receptors. Raven Press, New York, pp. 147–155

    Google Scholar 

  • Butcher SP, Collins JF, Roberts PJ (1983) Characterization of the binding of DL-[3H]-2-amino-4-phos- phonobutyrate to L-glutamate-sensitive sites on rat brain synaptic membranes. Br J Pharmacol 80: 355–364

    PubMed  CAS  Google Scholar 

  • Casida JE, Eto M, Moscioni AD, Engel DL, Milbrath DS, Verkade JG (1976) Structure-toxicity relationships of 2,6,7-trioxabicyclo[2.2.2]octanes and related compounds. Toxicol Appl Pharmacol 36: 261–279

    Article  PubMed  CAS  Google Scholar 

  • Clark RB, Donaldson PL, Gration KAF, Lambert JJ, Piek T, Ramsey R, Spanjer W, Usherwood PNR (1982) Block of locust muscle glutamate receptors by δ-philanthotoxin occurs after receptor activation. Brain Res 241: 105–114

    Article  PubMed  CAS  Google Scholar 

  • Clifford DP, Jeffrey P (1977) The insecticidal and acaricidal properties of some 3-alkylcarbamoylox- imine-2,4-dimethyl-1,5-benzodiazepines. Pestic Sci 8: 446–448

    Article  CAS  Google Scholar 

  • Cole RJ (1981) Tremorgenic mycotoxins: an update. In: Ory RL (ed) Antinutrients and natural toxicants in foods. Food and Nutrition Press, Westport, CT, pp. 17–33

    Google Scholar 

  • Cull-Candy SG (1982) Properties of postsynaptic channels activated by glutamate and GABA in locust muscle fibres. In: Neuropharmacology of insects. Ciba Found Symp 88. Pitman, London, pp. 70–82

    Google Scholar 

  • Cull-Candy SG, Miledi R (1981) Junctional and extrajunctional membrane channels activated by GABA in locust muscle fibres. Proc R Soc London Ser B 211: 527–535

    Article  CAS  Google Scholar 

  • Cull-Candy SG, Miledi R (1983) Block of glutamate-activated synaptic channels by curare and gallamine. Proc R Soc London Ser B 218: 111–118

    Article  CAS  Google Scholar 

  • Eldefrawi ME, Eldefrawi AT (1980) Putative acetylcholine receptors in housefly brain. In: Sattelle DB, Hall LM, Hildebrand JG (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier/North-Holland Biomed Press, Amsterdam New York, pp. 59–70

    Google Scholar 

  • Eldefrawi ME, O’Brien RD (1966) Permeability of the abdominal nerve cord of the American cock¬roach to fatty acids. J Insect Physiol 12: 1133–1142

    Article  PubMed  CAS  Google Scholar 

  • Eldefrawi ME, O’Brien RD (1967) Permeability of the abdominal nerve cord of the American cockroach, Periplaneta americana L. to quaternary ammonium salts. J Exp Biol 46: 1–12

    CAS  Google Scholar 

  • Eldefrawi ME, Toppozada A, Salpeter MM, O’Brien RD (1968) The location of penetration barriers in the ganglia of the American cockroach, Periplaneta americana. J Exp Biol 48: 325–338

    PubMed  CAS  Google Scholar 

  • Enna SJ (1983) Gaba receptors. In: Enna SJ (ed) The GABA receptors. Humana Press, Clifton, NJ, pp. 1–23

    Google Scholar 

  • Ferkany J, Zaczek R, Markl A, Coyle JT (1984) Glutamate-containing dipeptides enhance specific binding at glutamate receptors and inhibit specific binding at kainate receptors in rat brain. Neurosci Lett 44: 281–286

    Article  PubMed  CAS  Google Scholar 

  • Filbin MT, Eldefrawi ME, Eldefrawi AT (1985) Biochemical identification of a putative glutamate re¬ceptor in housfly thoracic membranes. Life Sci 36: 1531–1539

    Article  PubMed  CAS  Google Scholar 

  • Gration KAF, Lambert JJ, Ramsey R, Usherwood PNR (1981) Nonrandom openings and concentration-dependent lifetimes of glutamate-gated channels in muscle membrane. Nature (London) 291: 423–425

    Article  CAS  Google Scholar 

  • Haim N, Nahum S, Dudai Y (1979) Properties of a putative muscarinic cholinergic receptor from Drosophila melanogaster. J Neurochem 32: 543–552

    Article  PubMed  CAS  Google Scholar 

  • Ishida M, Shinozaki H (1980) Differential effects of diltiazem on glutamate potentials and excitatory junctional potentials at the crayfish neuromuscular junction. J Physiol (London) 298: 301–319

    CAS  Google Scholar 

  • Johnston GAR, Curtis DR, Davis J, McCulloch RM (1974) Spinal interneurone excitation by conformationally restricted analogues of L-glutamic acid. Nature (London) 248: 804–805

    Article  CAS  Google Scholar 

  • Kawai N, Miwa A, Abe T (1982) Spider venom contains specific blocker of glutaminergic synapses. Brain Res 247: 169–171

    Article  PubMed  CAS  Google Scholar 

  • Kawai N, Miwa A, Abe T (1983) Specific antagonism of the glutamate receptor by an extract from the venom of the spider Araneus ventricosus. Toxicon 21: 438–440

    Article  PubMed  CAS  Google Scholar 

  • Kuwano E, Ohshima K, Eto M (1980) Syntheses and insecticidal activity of 8-isopropyl-6-oxabi- cyclo[3.2.1]octan-7-one, a partial skeleton of picrotoxinin, and related compounds. Agric Biol Chem 44: 383–386

    Article  CAS  Google Scholar 

  • Lawrence LJ, Casida JE (1983) Stereospecific action of pyrethroid insecticides on the y-aminobutyric acid receptorionophore complex. Science 221: 1399–1401

    Article  PubMed  CAS  Google Scholar 

  • Lawrence LF, Casida JE (1984) Interactions of lindane, toxaphene and cyclodienes with brain-specific i-butylbicyclophosphorothionate receptor. Life Sci 35: 171–178

    Article  PubMed  CAS  Google Scholar 

  • Lea TJ, Usherwood PNR (1973) The site of action of ibotenic acid and the identification of two populations of glutamate receptors on insect muscle-fibres. Comp Gen Pharmacol 4: 333–350

    Article  PubMed  CAS  Google Scholar 

  • Leeb-Lundberg F, Snowman A, Olsen RW (1981) Perturbation of benzodiazepine receptor binding by pyrazolpyridines involves picrotoxinin/barbiturate receptor sites. J Neuro sci YA1X-M1

    Google Scholar 

  • Lingle C, Eisen JS, Marder E (1981) Block of glutamatergic excitatory synaptic channels by chlorisondamine. Mol Pharmacol 19: 349–353

    PubMed  CAS  Google Scholar 

  • Massotti M, Guidotti A, Costa E (1981) Characterization of benzodiazepine and y-aminobutyric acidrecognition sites and their endogenous modulators. J Neurosci 1: 409 - 418

    PubMed  CAS  Google Scholar 

  • Matsumura F, Ghiasuddin SM (1983) Evidence for similarities between cyclodiene type insecticides and picrotoxinin in their action mechanism. J Environ Sci Health B 18: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Michaelis EK, Michaelis ML, Stormann TM, Chittenden WL, Grubbs RD (1983) Purification and molecular characterization of the brain synaptic membrane glutamate-binding protein. J Neurochem 40: 1742–1753

    Article  PubMed  CAS  Google Scholar 

  • Miller TA, Maynard M, Kennedy JM (1979) Structure and insecticidal activity of picrotoxinin analogs. Pestic Biochem Physiol 10: 128–136

    Article  CAS  Google Scholar 

  • Nadler JV (1979) Kainic acid: neurophysiological and neurotoxic actions. Life Sci 24: 289–300

    Article  PubMed  CAS  Google Scholar 

  • Olsen RW, Ticku MK, Miller TA (1978) Dihydropicrotoxinin binding to crayfish muscle sites possibly related to y-aminobutyric acid receptor-ionophore. Mol Pharmacol 14: 381–390

    PubMed  CAS  Google Scholar 

  • Olsen RW, Wong EHF, Stauber GB, King RG (1984) Biochemical pharmacology of the y-aminobutyric acid receptor-ionophore protein. Fed Proc 43: 2773–2778

    PubMed  CAS  Google Scholar 

  • Ostlind DA, Cifelli S, Lang R (1979) Insecticidal activity of the antiparasitic avermectins. Vet Rec 105: 168

    Article  PubMed  CAS  Google Scholar 

  • Ozoe Y, Mochida K, Nakamura T, Shimizu A, Eto M (1983) Toxicity of bicyclic phosphate GABA antagonists to the housefly Musca domestica L. J Pestic Sci 8: 601–605

    Article  CAS  Google Scholar 

  • Pong S-S, Dehaven R, Wang CC (1982) A comparative study of avermectin B1a and other modulators of the y-aminobutyric acid receptor chloride ion channel complex. J Neurosci 2: 966–971

    PubMed  CAS  Google Scholar 

  • Ramanjaneyulu R, Ticku MK (1984) Binding characteristics and interactions of depressant drugs with [35S]/-butylbicyclophosphorothionate, a ligand that binds to the picrotoxinin site. J Neurochem 42: 221–229

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen BK, Gepner JI, Teng NNH, Hall LM (1977) Characterization of an a-bungarotoxin binding component from Drosophila melanogaster. J Neurochem 29: 1013–1029

    Article  PubMed  CAS  Google Scholar 

  • Shaker N, Eldefrawi AT (1981) Muscarinic receptor in housefly brain and its interaction with chlorobenzilate. Pestic Biochem Physiol 15: 14–20

    Article  CAS  Google Scholar 

  • Sharif NA, Roberts PJ (1980) Problems associated with the binding of L-glutamic acid to synaptic membranes: methodological aspects. J Neurochem 34: 779–784

    Article  PubMed  CAS  Google Scholar 

  • Sigel E, Barnard EA (1984) A y-aminobutyric acid/benzodiazepine receptor complex from bovine cerebral cortex. J Biol Chem 259: 7219–7223

    PubMed  CAS  Google Scholar 

  • Speth RC, Wastek GJ, Johnson PC, Yamamura HJ (1978) Benzodiazepine binding in human brain:characterization using [3H]flunitrazepam. Life Sci 22: 859–866

    Article  PubMed  CAS  Google Scholar 

  • Supavilai P, Karobath M (1981) In vitro modulation by avermectin Bla of the GABA/benzodiazepine receptor complex of rat cerebellum. J Neurochem 36: 798–803

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Scott JG, Matsumura F (1984) Picrotoxinin receptor in the central nervous system of the American cockroach: its role in the action of cyclodiene-type insecticides. Pestic Biochem Physiol 22: 117–127

    Article  CAS  Google Scholar 

  • Teichberg VI, Tal N, Goldberg O, Luini A (1984) Barbiturates, alcohols and the CNS excitatory neurotransmission: specific effects on the kainate and quisqualate receptors. Brain Res 291: 285–292

    Article  PubMed  CAS  Google Scholar 

  • Usherwood PNR (1980) Neuromuscular transmitter receptors of insect muscle. In: Sattelle DB, Hall LH, Hildebrand JG (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier/North-Holland Biomed Press, Amsterdam New York, pp. 141–152

    Google Scholar 

  • Usherwood PNR (1981) Glutamate synapses and receptors on insect muscle. In: DiChiara G, Gessa GL (eds) Glutamate as a neurotransmitter. Raven Press, New York, pp. 183–193

    Google Scholar 

  • Werling LL, Doman KA, Nadler JV (1983) L-[3H]Glutamate binding to hippocampal synaptic embranes: two binding sites discriminated by their differing affinities for quisqualate. J Neurochem 41: 586–593

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg 1985

About this chapter

Cite this chapter

Eldefrawi, M.E., Abalis, I.M., Filbin, M.T., Eldefrawi, A.T. (1985). Glutamate and GABA Receptors of Insect Muscles: Biochemical Identification and Interactions with Insecticides. In: von Keyserlingk, H.C., Jäger, A., von Szczepanski, C. (eds) Approaches to New Leads for Insecticides. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70821-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70821-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70823-7

  • Online ISBN: 978-3-642-70821-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics