Skip to main content

Insecticides as Inhibitors of Respiration

  • Chapter
Approaches to New Leads for Insecticides

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Under aerobic conditions insects meet their energy requirements by respiration. This is essentially the oxidation of biological fuel molecules. Energy is liberated via the respiratory chain and stored as energy-rich phosphate during the process of oxidative phosphorylation. The many chemical steps involved in this process of respiration and in the subsequent conservation of the derived energy in the form of ATP are catalyzed by a number of enzymes. Here we find differences between insects and mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson AD, March RB, Metealf RL (1954) Inhibition of the succinoxidase system of susceptible and resistant houseflies by DDT and related compounds. Ann Entomol Soc Am 47: 567–595

    Google Scholar 

  • Barsa MC, Ludwig D (1959) Effects of DDT on the respiratory enzymes of the mealworm, Tenebrio molitor ( L.), and of the housefly, Musca domestica (L.). Ann Entomol Soc Am 52: 179–185

    CAS  Google Scholar 

  • Chance B, Sacktor B (1958) Respiratory metabolism of insect flight muscle. II. Kinetics of respiratory enzyme in flight muscle sarcosomes. Arch Biochem Biophys 76: 509–531

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Williams GR (1956) Adv Enzymol 17: 65–134

    CAS  Google Scholar 

  • Conover T, Ernster L (1960) Bypass of the amytal-sensitive site of the respiratory chain in mitochondria by means of vitamin K3. Acta Chem Scand 14: 1840–1848

    Article  Google Scholar 

  • Estabrock RW, Sacktor B (1958) α-glycerophosphate oxidase of flight muscle mitochondria. J Biol Chem 233:1014–1019

    Google Scholar 

  • Fukami J (1954) Effect of rotenone on the succinoxidase system in the muscle of the cockroach. Jpn J Appl Zool 19: 29–37

    CAS  Google Scholar 

  • Fukami J (1956) Effect of some insecticides on the respiration of insect organs, with special referenceto the effects of rotenone. Botyu-Kagaku 21: 122–128

    CAS  Google Scholar 

  • Fukami J (1961) Effect of rotenone on the respiratory enzyme system of insect muscle. Bull Natl Sci (Wellington) C 13: 33–45

    Google Scholar 

  • Fukami J (1976) Insecticides as inhibitors of respiration. In: Wilkinson CF (ed) Insecticide biochemistry and physiology. Plenum Press, London New York, pp. 363–396

    Google Scholar 

  • Fukami J (1984) Rotenone and rotenoids. Submitted to comprehensive biochemistry, physiology and pharmacology. Pergamon Press, Oxford New York

    Google Scholar 

  • Fukami J, Tomizawa C (1958) Effect of rotenone and its derivatives on the respiration of brain in guinea pig. Botyu-Kagaku 23: 205–208

    Google Scholar 

  • Fukami J, Nakatsugawa T, Narahashi T (1959) The relation between chemical structure and toxicity in rotenone derivatives. Jpn J Appl Entomol Zool 3: 259–265

    Article  Google Scholar 

  • Fukami J, Shishido T, Fukunaga K, Casida JE (1969) Oxidative metabolism of rotenone in mammals, fish and insects and its relation to selective toxicity. J Agric Food Chem 17: 1217–1226

    Article  CAS  Google Scholar 

  • Hollunger G (1955) Guanidines and oxidative phosphorylation. Acta Pharmacol Toxicol Suppl No 1 11: 84

    Article  CAS  Google Scholar 

  • Ilivicky J, Chefurka W, Casida JE (1967) Oxidative phosphorylation and sensitivity to uncouplers of housefly mitochondria: Influence of isolation medium. J Econ Entomol 60: 1404–1409

    PubMed  CAS  Google Scholar 

  • Jeng M, Hals C, Crane FL, Takahashi S, Tamura S, Folkers K (1968) Inhibition of mitochondrial electron transport by piericidin a and related compounds. Biochemistry 7: 1311–1317

    Article  PubMed  CAS  Google Scholar 

  • Lardy H, Ferguson SM (1969) Oxidative phosphorylation: Role of inorganic phosphate and acceptor system in control of metabolic rates. J Biol Chem 195: 215–222

    Google Scholar 

  • Marquardt RR, Brosemer RW (1966) Insect extramitochondrial a-glycerophosphate dehydrogenase. I. Crystallization and physical properties of the enzyme from honeybee ( Apis ellifera) thoraces. Biochim Biophys Acta 128: 454–460

    Google Scholar 

  • Matsuda M, Fukami J (1972) Preliminary survey of effects of phenols on the oxidative phosphorylation in the american cockroach muscle mitochondria. Appl Entomol Zool 7: 27–36

    CAS  Google Scholar 

  • Matsumura F, Narahashi T (1971) ATPase inhibition and electrophysiological change caused by DDT and related neuroactive agents in lobster nerve. Biochem Pharmacol 20: 825–837.

    Article  PubMed  CAS  Google Scholar 

  • Mitsui T, Fukami J, Fukunaga K, Takahashi N, Tamura S (1969) Studies on piericidin. I. Effect of piericidin a and b on the mitochondrial electron transport in insects. Butyu-Kagaku 34: 135–139.

    CAS  Google Scholar 

  • Mitsui T, Fukami J, Fukunaga K, Takahashi N, Tamura S (1970) Studies on piericidin: Antagonistic effect of vitamin K3 on the respiratory chain of insects and mammals in the presence of piericidin. J Agric Biol Chem 34: 1101–1109

    Article  CAS  Google Scholar 

  • Nakakita H (1976) The inhibitory site of phosphine. J Pestic Sci 1: 235–238

    Article  CAS  Google Scholar 

  • O’Brien RD, Cheng L, Kimmel EC (1965) Inhibition of the a-glycerophosphate shuttle in housefly flight muscle. J Insect Physiol 11: 1241–1248

    Article  PubMed  Google Scholar 

  • Price NR (1980) Some aspects of the inhibition of cytochrome c oxidase by phosphine in susceptible and resistant strains of Rhyzopertha dominica. Insect Biochem 10: 147–150

    Article  CAS  Google Scholar 

  • Price NR, Mills KA, Humphries LA (1982) Phosphine toxicity and catalase activity in sesceptible and resistant strains of the lesser grain borer (Phyzopertga dominica). Comp Biochem Physiol 73 C:411–413

    Google Scholar 

  • Sacktor B (1965) Energetics and metabolism of muscular contraction in insect mitochondria. In: Rockstein M (ed) Physiology of insecta, vol II. Academic Press, London New York, pp. 484–580

    Google Scholar 

  • Sacktor B (1974) Biological oxidations and energetics in insect mitochondria. In: Rockstein M (ed) Physiology of insecta, vol IV. Academic Press, London New York, pp. 271–353

    Google Scholar 

  • Sacktor B, Childress CC (1967) Metabolism of proline in insect flight muscles and its significance in stimulating the oxidation of pyruvate. Arch Biochem Biophys 120: 583–588

    Article  CAS  Google Scholar 

  • Tischler N (1936) Studies on how derris kills insects. J Econ Entomol 28: 215–219

    Google Scholar 

  • Tsuda S, Urakawa N, Fukami J (1977) Inhibitory effect of papaverine on a respiration-dependent contracture of guinea pig Taenia coli in high K+ medium. III. Difference effect of papaverine and rotenone on DT-diaphorase. Jpn J Pharmacol 27: 855–863

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse HW (1964) Biochem Pharmacol 13: 319

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi I, Matsumura F, Kadous AA (1979) Inhibition of synaptic ATPase by heptachlor epoxide in rat brain. Pestic Biochem Physiol 11: 285–293

    Article  CAS  Google Scholar 

  • Yamaguchi I, Matsumura F, Kadous AA (1980) Heptachlor epoxide: effect on calcium mediated transmitter release from brain synaptosomes in rat. Biochem Pharmacol 29: 1815–1823

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg 1985

About this chapter

Cite this chapter

Fukami, J.I. (1985). Insecticides as Inhibitors of Respiration. In: von Keyserlingk, H.C., Jäger, A., von Szczepanski, C. (eds) Approaches to New Leads for Insecticides. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70821-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70821-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70823-7

  • Online ISBN: 978-3-642-70821-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics